26 research outputs found

    Dermacentor reticulatus: a vector on the rise

    Get PDF
    Dermacentor reticulatus is a hard tick species with extraordinary biological features. It has a high reproduction rate, a rapid developmental cycle, and is also able to overcome years of unfavourable conditions. Dermacentor reticulatus can survive under water for several months and is cold-hardy even compared to other tick species. It has a wide host range: over 60 different wild and domesticated hosts are known for the three active developmental stages. Its high adaptiveness gives an edge to this tick species as shown by new data on the emergence and establishment of D. reticulatus populations throughout Europe. The tick has been the research focus of a growing number of scientists, physicians and veterinarians. Within the Web of Science database, more than a fifth of the over 700 items published on this species between 1897 and 2015 appeared in the last three years (2013–2015). Here we attempt to synthesize current knowledge on the systematics, ecology, geographical distribution and recent spread of the species and to highlight the great spectrum of possible veterinary and public health threats it poses. Canine babesiosis caused by Babesia canis is a severe leading canine vector-borne disease in many endemic areas. Although less frequently than Ixodes ricinus, D. reticulatus adults bite humans and transmit several Rickettsia spp., Omsk haemorrhagic fever virus or Tick-borne encephalitis virus. We have not solely collected and reviewed the latest and fundamental scientific papers available in primary databases but also widened our scope to books, theses, conference papers and specialists colleagues’ experience where needed. Besides the dominant literature available in English, we also tried to access scientific literature in German, Russian and eastern European languages as well. We hope to inspire future research projects that are necessary to understand the basic life-cycle and ecology of this vector in order to understand and prevent disease threats. We conclude that although great strides have been made in our knowledge of the eco-epidemiology of this species, several gaps still need to be filled with basic research, targeting possible reservoir and vector roles and the key factors resulting in the observed geographical spread of D. reticulatus. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13071-016-1599-x) contains supplementary material, which is available to authorized users

    Antarctic Yeasts as a Source of Enzymes for Biotechnological Applications

    No full text
    Psychrophilic and psychrotrophic yeasts able to live in extremely cold environments like Antarctica produce cold-active enzymes as part of their metabolic adaptation mechanisms. Some of these enzymes could be used for industrial and biotechnological applications requiring high activity at mild/cold temperatures or a fast inactivation by heat. In this chapter, the basic principles for screening of cold-active enzymes and their potential industrial applications (textiles, food and dairy products, brewing and wine industry, laundry, etc) are presented. When it comes to the search of yeasts with cold-enzymes production, Antarctica is one of the most promised environments to work in. Cold-active hydrolytic enzymes from Antarctic yeasts such as lipases, proteases, cellulases and amylases are mentioned in this chapter. Also pectinolytic, lignocellulolytic and oil-related (lipase and esterase) enzymes produced by these microorganisms are presented, focusing on yeasts isolation, enzymes producers screening, and purification and characterization of specific col-active enzymes. The near future should find us discussing the regulation about the use of Antarctic yeast as a source of cold enzymes and, once this point be clarified and approved by the international forums on Antarctic activities regulation, the development and scaling up of these biological products may be addressed.Fil: Martorell, María Martha. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Ruberto, Lucas Adolfo Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; Argentina. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Castellanos de Figueroa, Lucia Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Mac Cormack, Walter Patricio. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentin
    corecore