29 research outputs found

    Insulin-like growth factor-1 receptor acts as a growth regulator in synovial sarcoma

    No full text
    Synovial sarcomas account for 5–10% of all soft tissue sarcomas and the majority of synovial sarcomas display characteristic t(X;18) translocations that result in enhanced transcription of the insulin-like growth factor-2 (IGF-2) gene. IGF-2 is an essential fetal mitogen involved in the pathogenesis of different tumours, leading to cellular proliferation and inhibition of apoptosis. Here we asked whether activation of IGF signalling is of functional importance in synovial sarcomas. We screened human synovial sarcomas for expression of IGF-2 and the phosphorylated IGF-1 receptor (IGF-1R), which mainly mediates the proliferative and anti-apoptotic effects of IGF-2. Since both the phosphatidylinositol 3-kinase (PI3K)–AKT pathway and the MAPK signalling cascade are known to be involved in the transmission of IGF-1R signals, expression of phosphorylated (p)-AKT and p-p44/42 MAPK was additionally assessed. All tumours expressed IGF-2 and 78% showed an activated IGF-1R. All tumours were found to express p-AKT and 92% showed expression of activated p44/42 MAPK. To analyse the functional and potential therapeutic relevance of IGF-1R signalling, synovial sarcoma cell lines were treated with the IGF-1R inhibitor NVP-AEW541. Growth was impaired by the IGF-1R antagonist, which was consistently accompanied by a dose-dependent reduction of phosphorylation of AKT and p44/42 MAPK. Functionally, inhibition of the receptor led to increased apoptosis and diminished mitotic activity. Concurrent exposure of selected cells to NVP-AEW541 and conventional chemotherapeutic agents resulted in positive interactions. Finally, synovial sarcoma cell migration was found to be dependent on signals transmitted by the IGF-1R. In summary, our data show that the IGF-1R might represent a promising therapeutic target in synovial sarcomas

    The Prosurvival IKK-Related Kinase IKK epsilon Integrates LPS and IL17A Signaling Cascades to Promote Wnt-Dependent Tumor Development in the Intestine

    No full text
    Constitutive Wnt signaling promotes intestinal cell proliferation, but signals from the tumor microenvironment are also required to support cancer development. The role that signaling proteins play to establish a tumor microenvironment has not been extensively studied. Therefore, we assessed the role of the proinflammatory Ikk-related kinase Ikke in Wnt-driven tumor development. We found that Ikke was activated in intestinal tumors forming upon loss of the tumor suppressor Apc. Genetic ablation of Ikke in beta-catenin-driven models of intestinal cancer reduced tumor incidence and consequently extended survival. Mechanistically, we attributed the tumor-promoting effects of Ikk epsilon to limited TNF-dependent apoptosis in transformed intestinal epithelial cells. In addition, Ikk epsilon was also required for lipo-polysaccharide (LPS) and IL17A-induced activation of Akt, Mek1/2, Erk1/2, and Msk1. Accordingly, genes encoding proinflammatory cytokines, chemokines, and anti-microbial peptides were downregulated in Ikk epsilon-deficient tissues, subsequently affecting the recruitment of tumor-associated macrophages and IL17A synthesis. Further studies revealed that IL17A synergized with commensal bacteria to trigger Ikk epsilon phosphorylation in transformed intestinal epithelial cells, establishing a positive feedback loop to support tumor development. Therefore, TNF, LPS, and IL17A-dependent signaling pathways converge on Ikk epsilon to promote cell survival and to establish an inflammatory tumor microenvironment in the intestine upon constitutive Wnt activation. (C) 2016 AACR

    Lysine-specific demethylase 1 restricts hematopoietic progenitor proliferation and is essential for terminal differentiation

    No full text
    Lysine (K)-specific demethylase 1A (LSD1/KDM1A) has been identified as a potential therapeutic target in solid cancers and more recently in acute myeloid leukemia. However, the potential side effects of a LSD1-inhibitory therapy remain elusive. Here, we show, with a newly established conditional in vivo knockdown model, that LSD1 represents a central regulator of hematopoietic stem and progenitor cells. LSD1 knockdown (LSD1-kd) expanded progenitor numbers by enhancing their proliferative behavior. LSD1-kd led to an extensive expansion of granulomonocytic, erythroid and megakaryocytic progenitors. In contrast, terminal granulopoiesis, erythropoiesis and platelet production were severely inhibited. The only exception was monopoiesis, which was promoted by LSD1 deficiency. Importantly, we showed that peripheral blood granulocytopenia, monocytosis, anemia and thrombocytopenia were reversible after LSD1-kd termination. Extramedullary splenic hematopoiesis contributed to the phenotypic reversion, and progenitor populations remained expanded. LSD1-kd was associated with the upregulation of key hematopoietic genes, including Gfi1b, Hoxa9 and Meis1, which are known regulators of the HSC/progenitor compartment. We also demonstrated that LSD1-kd abrogated Gfi1b-negative autoregulation by crossing LSD1-kd with Gfi1b:GFP mice. Taken together, our findings distinguish LSD1 as a critical regulator of hematopoiesis and point to severe, but reversible, side effects of a LSD1-targeted therapy
    corecore