4 research outputs found

    LES GYRODACTYLIDES PARASITANT LES SALMONIDES DU MASSIF ARMORICAIN ET DU BASSIN DE L'ADOUR (BIODIVERSITE ET EPIDEMIOLOGIE)

    No full text
    RENNES-Agrocampus-Bibl. Linné (352382308) / SudocNANTES-Ecole Nat.Vétérinaire (441092302) / SudocSudocFranceF

    A New Lineage of Perch Rhabdovirus Associated with Mortalities of Farmed Perch

    No full text
    The new genetic data are available in GenBank (MW68582)International audienceA perhabdovirus was isolated from a mortality episode affecting a fish farm in 2019 in Western Europe. This virus was produced in cell culture and was readily detected by a species-specific real-time PCR assay. The near-complete sequence of the virus obtained showed some relatedness with viruses of the species Perhabdovirus perca. However, it was distinct enough from these viruses to form a separate genetic lineage. Multiple substitutions along the genome caused non-detection using a range of conventional PCRs previously shown to target four known genogroups of perhabdoviruses. However, various generic PCRs efficiently detected the isolated virus. The origin of this virus remains to be elucidated. It may have been introduced into the farm via wild genitors. This finding provides new evidence of the high genetic diversity of percid perhabdoviruses and the potential of new genotypes to emerge as threats for fish farming. Efforts to improve the existing diagnostic methods and control this large group of viruses are still needed

    An eDNA-based method for monitoring a salmonid infectious disease: Development and application

    No full text
    In the current context of global change, freshwater species are increasingly exposed to emerging infectious diseases (Okamura and Feist 2011). As an example, the Proliferative Kidney Disease (PKD) has emerged in salmonid fish during the last two decades, both in Europe and North America, causing important losses in aquaculture and worrying declines of several wild salmonid populations (Sudhagar et al. 2019). It is caused by Tetracapsuloides bryosalmonae, a myxozoan parasite with a complex life cycle involving two hosts: salmonids (intermediate host) and bryozoans (primary host). As PKD development strongly depends upon water temperature and quality, it is expected that global change could lead to more outbreaks (Okamura et al. 2011). Current monitoring of fish parasite load and infection status relies on histological observation or T. bryosalmonae DNA amplification out of kidney samples, involving fish euthanasia, and thus relatively small sample sizes when inferring infection prevalence. As large-scale screening of this parasite infections are required to better understand PKD dynamics, we have developed a non-lethal method for T. bryosalmonae detection in fish host based on the biological fact that T. bryosalmonae spores can be excreted from infected fish into the water through urine (Hedrick et al. 2004). This novel approach based on the detection of T. bryosalmonae DNA in fish urine was developed on wild brown trout (Salmo trutta), a species known to be an intermediate host of T. bryosalmonae and for releasing infective spores (only towards bryozoan host) through urine (Okamura et al. 2011). Applying this method, we have been able to map wild brown trout infection prevalence across 50 sites at the foothill of French Pyrenees and to identify the main environmental drivers of this disease
    corecore