52 research outputs found
String cosmological model in the presence of a magnetic flux
A Bianchi type I string cosmological model in the presence of a magnetic flux
is investigated. A few plausible assumptions regarding the parametrization of
the cosmic string and magneto-fluid are introduced and some exact analytical
solutions are presented.Comment: 9 pages, 4 Figure
Chiral fermion mass and dispersion relations at finite temperature in the presence of hypermagnetic fields
We study the modifications to the real part of the thermal self-energy for
chiral fermions in the presence of a constant external hypermagnetic field. We
compute the dispersion relation for fermions occupying a given Landau level to
first order in g'^2, g^2 and g_phi^2 and to all orders in g'B, where g' and g
are the U(1)_Y and SU(2)_L couplings of the standard model, respectively, g_phi
is the fermion Yukawa coupling, and B is the hypermagnetic field strength. We
show that in the limit where the temperature is large compared to sqrt{g'B},
left- and right-handed modes acquire finite and different B-dependent masses
due to the chiral nature of their coupling with the external field. Given the
current bounds on the strength of primordial magnetic fields, we argue that the
above is the relevant scenario to study the effects of magnetic fields on the
propagation of fermions prior and during the electroweak phase transition.Comment: 11 pages 4 figures, published versio
The Impact of Stellar Migration on Disk Outskirts
Stellar migration, whether due to trapping by transient spirals (churning),
or to scattering by non-axisymmetric perturbations, has been proposed to
explain the presence of stars in outer disks. After a review of the basic
theory, we present compelling, but not yet conclusive, evidence that churning
has been important in the outer disks of galaxies with type II (down-bending)
profiles, while scattering has produced the outer disks of type III
(up-bending) galaxies. In contrast, field galaxies with type I (pure
exponential) profiles appear to not have experienced substantial migration. We
conclude by suggesting work that would improve our understanding of the origin
of outer disks.Comment: Invited review, Book chapter in "Outskirts of Galaxies", Eds. J. H.
Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and Space Science Library,
Springer, in press 39 pages, 15 figure
Dependence of direct detection signals on the WIMP velocity distribution
The signals expected in WIMP direct detection experiments depend on the
ultra-local dark matter distribution. Observations probe the local density,
circular speed and escape speed, while simulations find velocity distributions
that deviate significantly from the standard Maxwellian distribution. We
calculate the energy, time and direction dependence of the event rate for a
range of velocity distributions motivated by recent observations and
simulations, and also investigate the uncertainty in the determination of WIMP
parameters. The dominant uncertainties are the systematic error in the local
circular speed and whether or not the MW has a high density dark disc. In both
cases there are substantial changes in the mean differential event rate and the
annual modulation signal, and hence exclusion limits and determinations of the
WIMP mass. The uncertainty in the shape of the halo velocity distribution is
less important, however it leads to a 5% systematic error in the WIMP mass. The
detailed direction dependence of the event rate is sensitive to the velocity
distribution. However the numbers of events required to detect anisotropy and
confirm the median recoil direction do not change substantially.Comment: 21 pages, 7 figures, v2 version to appear in JCAP, minor change
A novel determination of the local dark matter density
We present a novel study on the problem of constructing mass models for the
Milky Way, concentrating on features regarding the dark matter halo component.
We have considered a variegated sample of dynamical observables for the Galaxy,
including several results which have appeared recently, and studied a 7- or
8-dimensional parameter space - defining the Galaxy model - by implementing a
Bayesian approach to the parameter estimation based on a Markov Chain Monte
Carlo method. The main result of this analysis is a novel determination of the
local dark matter halo density which, assuming spherical symmetry and either an
Einasto or an NFW density profile is found to be around 0.39 GeV cm with
a 1- error bar of about 7%; more precisely we find a for the Einasto profile and for the NFW. This is in contrast to the
standard assumption that is about 0.3 GeV cm with an
uncertainty of a factor of 2 to 3. A very precise determination of the local
halo density is very important for interpreting direct dark matter detection
experiments. Indeed the results we produced, together with the recent accurate
determination of the local circular velocity, should be very useful to
considerably narrow astrophysical uncertainties on direct dark matter
detection.Comment: 31 pages,11 figures; minor changes in the text; two figures adde
Large-scale magnetic fields from inflation in dilaton electromagnetism
The generation of large-scale magnetic fields is studied in dilaton
electromagnetism in inflationary cosmology, taking into account the dilaton's
evolution throughout inflation and reheating until it is stabilized with
possible entropy production. It is shown that large-scale magnetic fields with
observationally interesting strength at the present time could be generated if
the conformal invariance of the Maxwell theory is broken through the coupling
between the dilaton and electromagnetic fields in such a way that the resultant
quantum fluctuations in the magnetic field has a nearly scale-invariant
spectrum. If this condition is met, the amplitude of the generated magnetic
field could be sufficiently large even in the case huge amount of entropy is
produced with the dilution factor as the dilaton decays.Comment: 28 pages, 5 figures, the version accepted for publication in Phys.
Rev. D; some references are adde
The clustering of ultra-high energy cosmic rays and their sources
The sky distribution of cosmic rays with energies above the 'GZK cutoff'
holds important clues to their origin. The AGASA data, although consistent with
isotropy, shows evidence for small-angle clustering, and it has been argued
that such clusters are aligned with BL Lacertae objects, implicating these as
sources. It has also been suggested that clusters can arise if the cosmic rays
come from the decays of very massive relic particles in the Galactic halo, due
to the expected clumping of cold dark matter. We examine these claims and show
that both are in fact not justified.Comment: 13 pages, 8 figures, version in press at Phys. Rev.
Indirect Dark Matter Detection from Dwarf Satellites: Joint Expectations from Astrophysics and Supersymmetry
We present a general methodology for determining the gamma-ray flux from
annihilation of dark matter particles in Milky Way satellite galaxies, focusing
on two promising satellites as examples: Segue 1 and Draco. We use the
SuperBayeS code to explore the best-fitting regions of the Constrained Minimal
Supersymmetric Standard Model (CMSSM) parameter space, and an independent MCMC
analysis of the dark matter halo properties of the satellites using published
radial velocities. We present a formalism for determining the boost from halo
substructure in these galaxies and show that its value depends strongly on the
extrapolation of the concentration-mass (c(M)) relation for CDM subhalos down
to the minimum possible mass. We show that the preferred region for this
minimum halo mass within the CMSSM with neutralino dark matter is ~10^-9-10^-6
solar masses. For the boost model where the observed power-law c(M) relation is
extrapolated down to the minimum halo mass we find average boosts of about 20,
while the Bullock et al (2001) c(M) model results in boosts of order unity. We
estimate that for the power-law c(M) boost model and photon energies greater
than a GeV, the Fermi space-telescope has about 20% chance of detecting a dark
matter annihilation signal from Draco with signal-to-noise greater than 3 after
about 5 years of observation
Cosmological Non-Linearities as an Effective Fluid
The universe is smooth on large scales but very inhomogeneous on small
scales. Why is the spacetime on large scales modeled to a good approximation by
the Friedmann equations? Are we sure that small-scale non-linearities do not
induce a large backreaction? Related to this, what is the effective theory that
describes the universe on large scales? In this paper we make progress in
addressing these questions. We show that the effective theory for the
long-wavelength universe behaves as a viscous fluid coupled to gravity:
integrating out short-wavelength perturbations renormalizes the homogeneous
background and introduces dissipative dynamics into the evolution of
long-wavelength perturbations. The effective fluid has small perturbations and
is characterized by a few parameters like an equation of state, a sound speed
and a viscosity parameter. These parameters can be matched to numerical
simulations or fitted from observations. We find that the backreaction of
small-scale non-linearities is very small, being suppressed by the large
hierarchy between the scale of non-linearities and the horizon scale. The
effective pressure of the fluid is always positive and much too small to
significantly affect the background evolution. Moreover, we prove that
virialized scales decouple completely from the large-scale dynamics, at all
orders in the post-Newtonian expansion. We propose that our effective theory be
used to formulate a well-defined and controlled alternative to conventional
perturbation theory, and we discuss possible observational applications.
Finally, our way of reformulating results in second-order perturbation theory
in terms of a long-wavelength effective fluid provides the opportunity to
understand non-linear effects in a simple and physically intuitive way.Comment: 84 pages, 3 figure
- …