52 research outputs found

    String cosmological model in the presence of a magnetic flux

    Full text link
    A Bianchi type I string cosmological model in the presence of a magnetic flux is investigated. A few plausible assumptions regarding the parametrization of the cosmic string and magneto-fluid are introduced and some exact analytical solutions are presented.Comment: 9 pages, 4 Figure

    Chiral fermion mass and dispersion relations at finite temperature in the presence of hypermagnetic fields

    Full text link
    We study the modifications to the real part of the thermal self-energy for chiral fermions in the presence of a constant external hypermagnetic field. We compute the dispersion relation for fermions occupying a given Landau level to first order in g'^2, g^2 and g_phi^2 and to all orders in g'B, where g' and g are the U(1)_Y and SU(2)_L couplings of the standard model, respectively, g_phi is the fermion Yukawa coupling, and B is the hypermagnetic field strength. We show that in the limit where the temperature is large compared to sqrt{g'B}, left- and right-handed modes acquire finite and different B-dependent masses due to the chiral nature of their coupling with the external field. Given the current bounds on the strength of primordial magnetic fields, we argue that the above is the relevant scenario to study the effects of magnetic fields on the propagation of fermions prior and during the electroweak phase transition.Comment: 11 pages 4 figures, published versio

    The Impact of Stellar Migration on Disk Outskirts

    Full text link
    Stellar migration, whether due to trapping by transient spirals (churning), or to scattering by non-axisymmetric perturbations, has been proposed to explain the presence of stars in outer disks. After a review of the basic theory, we present compelling, but not yet conclusive, evidence that churning has been important in the outer disks of galaxies with type II (down-bending) profiles, while scattering has produced the outer disks of type III (up-bending) galaxies. In contrast, field galaxies with type I (pure exponential) profiles appear to not have experienced substantial migration. We conclude by suggesting work that would improve our understanding of the origin of outer disks.Comment: Invited review, Book chapter in "Outskirts of Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and Space Science Library, Springer, in press 39 pages, 15 figure

    Dependence of direct detection signals on the WIMP velocity distribution

    Full text link
    The signals expected in WIMP direct detection experiments depend on the ultra-local dark matter distribution. Observations probe the local density, circular speed and escape speed, while simulations find velocity distributions that deviate significantly from the standard Maxwellian distribution. We calculate the energy, time and direction dependence of the event rate for a range of velocity distributions motivated by recent observations and simulations, and also investigate the uncertainty in the determination of WIMP parameters. The dominant uncertainties are the systematic error in the local circular speed and whether or not the MW has a high density dark disc. In both cases there are substantial changes in the mean differential event rate and the annual modulation signal, and hence exclusion limits and determinations of the WIMP mass. The uncertainty in the shape of the halo velocity distribution is less important, however it leads to a 5% systematic error in the WIMP mass. The detailed direction dependence of the event rate is sensitive to the velocity distribution. However the numbers of events required to detect anisotropy and confirm the median recoil direction do not change substantially.Comment: 21 pages, 7 figures, v2 version to appear in JCAP, minor change

    A novel determination of the local dark matter density

    Full text link
    We present a novel study on the problem of constructing mass models for the Milky Way, concentrating on features regarding the dark matter halo component. We have considered a variegated sample of dynamical observables for the Galaxy, including several results which have appeared recently, and studied a 7- or 8-dimensional parameter space - defining the Galaxy model - by implementing a Bayesian approach to the parameter estimation based on a Markov Chain Monte Carlo method. The main result of this analysis is a novel determination of the local dark matter halo density which, assuming spherical symmetry and either an Einasto or an NFW density profile is found to be around 0.39 GeV cm3^{-3} with a 1-σ\sigma error bar of about 7%; more precisely we find a ρDM(R0)=0.385±0.027GeVcm3\rho_{DM}(R_0) = 0.385 \pm 0.027 \rm GeV cm^{-3} for the Einasto profile and ρDM(R0)=0.389±0.025GeVcm3\rho_{DM}(R_0) = 0.389 \pm 0.025 \rm GeV cm^{-3} for the NFW. This is in contrast to the standard assumption that ρDM(R0)\rho_{DM}(R_0) is about 0.3 GeV cm3^{-3} with an uncertainty of a factor of 2 to 3. A very precise determination of the local halo density is very important for interpreting direct dark matter detection experiments. Indeed the results we produced, together with the recent accurate determination of the local circular velocity, should be very useful to considerably narrow astrophysical uncertainties on direct dark matter detection.Comment: 31 pages,11 figures; minor changes in the text; two figures adde

    Large-scale magnetic fields from inflation in dilaton electromagnetism

    Full text link
    The generation of large-scale magnetic fields is studied in dilaton electromagnetism in inflationary cosmology, taking into account the dilaton's evolution throughout inflation and reheating until it is stabilized with possible entropy production. It is shown that large-scale magnetic fields with observationally interesting strength at the present time could be generated if the conformal invariance of the Maxwell theory is broken through the coupling between the dilaton and electromagnetic fields in such a way that the resultant quantum fluctuations in the magnetic field has a nearly scale-invariant spectrum. If this condition is met, the amplitude of the generated magnetic field could be sufficiently large even in the case huge amount of entropy is produced with the dilution factor 1024\sim 10^{24} as the dilaton decays.Comment: 28 pages, 5 figures, the version accepted for publication in Phys. Rev. D; some references are adde

    The clustering of ultra-high energy cosmic rays and their sources

    Full text link
    The sky distribution of cosmic rays with energies above the 'GZK cutoff' holds important clues to their origin. The AGASA data, although consistent with isotropy, shows evidence for small-angle clustering, and it has been argued that such clusters are aligned with BL Lacertae objects, implicating these as sources. It has also been suggested that clusters can arise if the cosmic rays come from the decays of very massive relic particles in the Galactic halo, due to the expected clumping of cold dark matter. We examine these claims and show that both are in fact not justified.Comment: 13 pages, 8 figures, version in press at Phys. Rev.

    Indirect Dark Matter Detection from Dwarf Satellites: Joint Expectations from Astrophysics and Supersymmetry

    Get PDF
    We present a general methodology for determining the gamma-ray flux from annihilation of dark matter particles in Milky Way satellite galaxies, focusing on two promising satellites as examples: Segue 1 and Draco. We use the SuperBayeS code to explore the best-fitting regions of the Constrained Minimal Supersymmetric Standard Model (CMSSM) parameter space, and an independent MCMC analysis of the dark matter halo properties of the satellites using published radial velocities. We present a formalism for determining the boost from halo substructure in these galaxies and show that its value depends strongly on the extrapolation of the concentration-mass (c(M)) relation for CDM subhalos down to the minimum possible mass. We show that the preferred region for this minimum halo mass within the CMSSM with neutralino dark matter is ~10^-9-10^-6 solar masses. For the boost model where the observed power-law c(M) relation is extrapolated down to the minimum halo mass we find average boosts of about 20, while the Bullock et al (2001) c(M) model results in boosts of order unity. We estimate that for the power-law c(M) boost model and photon energies greater than a GeV, the Fermi space-telescope has about 20% chance of detecting a dark matter annihilation signal from Draco with signal-to-noise greater than 3 after about 5 years of observation

    Cosmological Non-Linearities as an Effective Fluid

    Full text link
    The universe is smooth on large scales but very inhomogeneous on small scales. Why is the spacetime on large scales modeled to a good approximation by the Friedmann equations? Are we sure that small-scale non-linearities do not induce a large backreaction? Related to this, what is the effective theory that describes the universe on large scales? In this paper we make progress in addressing these questions. We show that the effective theory for the long-wavelength universe behaves as a viscous fluid coupled to gravity: integrating out short-wavelength perturbations renormalizes the homogeneous background and introduces dissipative dynamics into the evolution of long-wavelength perturbations. The effective fluid has small perturbations and is characterized by a few parameters like an equation of state, a sound speed and a viscosity parameter. These parameters can be matched to numerical simulations or fitted from observations. We find that the backreaction of small-scale non-linearities is very small, being suppressed by the large hierarchy between the scale of non-linearities and the horizon scale. The effective pressure of the fluid is always positive and much too small to significantly affect the background evolution. Moreover, we prove that virialized scales decouple completely from the large-scale dynamics, at all orders in the post-Newtonian expansion. We propose that our effective theory be used to formulate a well-defined and controlled alternative to conventional perturbation theory, and we discuss possible observational applications. Finally, our way of reformulating results in second-order perturbation theory in terms of a long-wavelength effective fluid provides the opportunity to understand non-linear effects in a simple and physically intuitive way.Comment: 84 pages, 3 figure
    corecore