21 research outputs found

    Constraining Light Gravitino Mass from Cosmic Microwave Background

    Full text link
    We investigate the possibilities of constraining the light gravitino mass m_{3/2} from future cosmic microwave background (CMB) surveys. A model with light gravitino with the mass m_{3/2}<O(10) eV is of great interest since it is free from the cosmological gravitino problem and, in addition, can be compatible with many baryogenesis/leptogenesis scenarios such as the thermal leptogenesis. We show that the lensing of CMB anisotropies can be a good probe for m_{3/2} and obtain an expected constraint on m_{3/2} from precise measurements of lensing potential in the future CMB surveys, such as the PolarBeaR and CMBpol experiments. If the gravitino mass is m_{3/2}=1 eV, we will obtain the constraint for the gravitino mass as m_{3/2} < 3.2 eV (95% C.L.) for the case with Planck+PolarBeaR combined and m_{3/2}=1.04^{+0.22}_{-0.26} eV (68% C.L.) for CMBpol. The issue of Bayesian model selection is also discussed.Comment: 22 pages, 6 figures, 7 tables, references are added, accepted for publication in JCA

    Costly sexual dimorphism in Cyclommatus metallifer stag beetles

    No full text
    In many animal species, male armature has evolved through sexual selection. This male weaponry can increase reproductive success, but only if the owner overcomes the associated costs. Male stag beetles bear one of the most extreme examples of male weaponry: their mandibles can be almost as long as their own body. We question whether the armature of male Cyclommatus metallifer negatively affects terrestrial locomotion (stability and cost). If so, we investigate whether these effects are potentially compensated by morphological and/or behavioural features, as seen in other specialized insect species. Conspecific females are used to represent the non-dimorphed condition. The presence of the huge male mandibular apparatus shifts the body centre of mass (bCOM) anteriorly. Concomitantly, the male fore limbs are 28% longer and are systematically positioned in a more anterior angular sector than in females. Thus, the rostral border of the support area of the leg tripod also moves forward. This suggests a stability enhancing mechanism. However, in contrast to load-carrying ants, the anteriorly placed bCOM still creates two pronounced statically instable periods each locomotor cycle. Due to the static instability, males must adjust their locomotor behaviour: they walk at higher cycle frequencies when compared to females of the same size, to ensure they proceed to the next stance before bumping to the ground with their heavy heads. Contrary to other specialized load-carrying insect species, the (muscle) mass specific mechanical cost of transport of males exceeds that of females by 40%. Since neither stability nor cost of transport benefit from the male forelimb size and positioning, their role in guaranteeing adequate terrestrial locomotion while carrying an enlarged mandibular apparatus seems doubtful. Instead, the long limbs are themselves functional in fights, by pitching the body upwards in order to throw opponents backwards. The oversized male stag beetle armature comes at high ecological costs: locomotion economics as well as stability clearly suffer from the large mandibles. The observed limb length dimorphism does not prevent this, but should probably be considered part of sexual selection, rather than a compensation for its consequences
    corecore