293 research outputs found

    Oxygen abundances in dwarf irregular galaxies and the metallicity - luminosity relationship

    Get PDF
    The low-luminosity dwarf irregular galaxies are considered. The oxygen abundances in HII regions of dwarf irregular galaxies were recalculated from published spectra through the recently suggested P - method. It has been found that the metallicity of low-luminosity dwarf irregular galaxies, with a few exceptions, correlates well with galaxy luminosity. The dispersion of oxygen abundances around the metallicity - luminosity relationship increases with decreasing of galaxy luminosity, as was found by Richer and McCall (1995). No relationship between the oxygen abundance and the absolute magnitude in the blue band for irregular galaxies obtained by Hidalgo-Gamez and Olofsson (1998) can be explained by the large uncertainties in the oxygen abundances derived through the Te - method, that in turn can be explained by the large uncertainties in the measurements of the strengths of the weak oxygen line [OIII]4363 used in the Te - method.Comment: 9 pages, 5 figures, accepted for publication in Astronomy and Astrophysic

    Abundance determinations in HII regions: model fitting versus Te-method

    Get PDF
    The discrepancy between the oxygen abundances in high-metallicity HII regions determined through the Te-method (and/or through the corresponding "strong lines - oxygen abundance" calibration) and that determined through the model fitting (and/or through the corresponding "strong lines - oxygen abundance" calibration) is discussed. It is suggested to use the interstellar oxygen abundance in the solar vicinity, derived with very high precision from the high-resolution observations of the weak interstellar absorption lines towards the stars, as a "Rosetta stone" to verify the validity of the oxygen abundances derived in HII regions with the Te-method at high abundances. The agreement between the value of the oxygen abundance at the solar galactocentric distance traced by the abundances derived in HII regions through the Te-method and that derived from the interstellar absorption lines towards the stars is strong evidence in favor of that i) the two-zone model for Te seems to be a realistic interpretation of the temperature structure within HII regions, and ii) the classic Te-method provides accurate oxygen abundances in HII regions. It has been concluded that the "strong lines - oxygen abundance" calibrations must be based on the HII regions with the oxygen abundances derived with the Te-method but not on the existing grids of the models for HII regions.Comment: 5 pages, 3 figures, accepted for publication in Astronomy and Astrophysic

    Abundance determination in HII regions from spectra without the [OII]3727+3729 line

    Full text link
    We suggest an empirical calibration for determination of oxygen and nitrogen abundances and electron temperature in HII regions where the [OII]3727+3729 line (R_2) is not available. The calibration is based on the strong emission lines of OIII, NII, and SII (NS calibration) and derived using the spectra of HII regions with measured electron temperatures as calibration datapoints. The NS calibration makes it possible to derive abundances for HII regions in nearby galaxies from the SDSS spectra where R_2 line is out of the measured wavelength range, but can also be used for the oxygen and nitrogen abundances determinations in any HII region independently whether the nebular oxygen line [OII]3727+3729 is available or not. The NS calibration provides reliable oxygen and nitrogen abundances for HII regions over the whole range of metallicities.Comment: 6 pages, 4 figures, accepted for publication in the MNRA

    Chemical abundances in spiral and irregular galaxies. O and N abundances derived from global emission--line spectra

    Full text link
    The validity of oxygen and nitrogen abundances derived from the global emission-line spectra of galaxies via the P-method has been investigated using a collection of published spectra of individual HII regions in irregular and spiral galaxies. The conclusions of Kobulnicky, Kennicutt & Pizagno (1999) that global emission-line spectra can reliably indicate the chemical properties of galaxies has been confirmed. It has been shown that the comparison of the global spectrum of a galaxy with a collection of spectra of individual HII regions can be used to distinguish high and low metallicity objects and to estimate accurate chemical abundances in a galaxy. The oxygen and nitrogen abundances in samples of UV-selected and normal nearby galaxies have been determined. It has been found that the UV-selected galaxies occupy the same area in the N/O -- O/H diagram as individual HII regions in nearby galaxies. Finally, we show that intermediate-redshift galaxies systematically deviate from the metallicity -- luminosity trend of local galaxies.Comment: 15 pages, 17 figures, accepted for publication in Astronomy and Astrophysic
    • …
    corecore