174 research outputs found

    Entanglement and quantum phase transitions in matrix product spin one chains

    Full text link
    We consider a one-parameter family of matrix product states of spin one particles on a periodic chain and study in detail the entanglement properties of such a state. In particular we calculate exactly the entanglement of one site with the rest of the chain, and the entanglement of two distant sites with each other and show that the derivative of both these properties diverge when the parameter gg of the states passes through a critical point. Such a point can be called a point of quantum phase transition, since at this point, the character of the matrix product state which is the ground state of a Hamiltonian, changes discontinuously. We also study the finite size effects and show how the entanglement depends on the size of the chain. This later part is relevant to the field of quantum computation where the problem of initial state preparation in finite arrays of qubits or qutrits is important. It is also shown that entanglement of two sites have scaling behavior near the critical point

    Recovering quantum information through partial access to the environment

    Full text link
    We investigate the possibility of correcting errors occurring on a multipartite system through a feedback mechanism that acquires information from partial access to the environment. A partial control scheme of this kind might be useful when dealing with correlated errors. In fact, in such a case, it could be enough to gather local information to decide what kind of global recovery to perform. Then, we apply this scheme to the depolarizing and correlated errors, and quantify its performance by means of the entanglement fidelity

    Equi-entangled bases in arbitrary dimensions

    Full text link
    For the space of two identical systems of arbitrary dimensions, we introduce a continuous family of bases with the following properties: i) the bases are orthonormal, ii) in each basis, all the states have the same values of entanglement, and iii) they continuously interpolate between the product basis and the maximally entangled basis. The states thus constructed may find applications in many areas related to quantum information science including quantum cryptography, optimal Bell tests and investigation of enhancement of channel capacity due to entanglement.Comment: 10 pages, 2 figures, 1 table, Accepted for publication in Phys. Rev.

    Stationary states of open XX-spin chains

    Get PDF
    We study an open quantum spin chain of arbitrary length with nearest neighbor X X interactions of strength g, immersed in an external constant magnetic field Δ along the z direction, whose end spins are weakly coupled to two heat baths at different temperatures. In the so-called global approach, namely, without neglecting interspin interactions, using standard weak-coupling limit techniques, we first derive the open chain master equation written in terms of fermionic mode operators. Then, we focus on the study of the dependence of the resulting open dynamics from the ratio r ≡ g/Δ. By increasing r, some of the chain Bohr transition frequencies become negative; when this occurs, both the generator of the dissipative time evolution and its stationary states behave discontinuously. As a consequence, the asymptotic spin and heat flows also exhibit discontinuities, but in a different way: while source terms in the spin flow continuity equation show jumps, the heat flow instead is continuous but with discontinuous first derivatives with respect to r. These two behaviors might be experimentally accessible; in particular, they could discriminate between the global and the local approaches to open quantum spin chains. Indeed, the latter one, which neglects interspin interactions in the derivation of the master equation, does not show any kind of discontinuous behavior

    Transition behavior in the capacity of correlated-noisy channels in arbitrary dimensions

    Full text link
    We construct a class of quantum channels in arbitrary dimensions for which entanglement improves the performance of the channel. The channels have correlated noise and when the level of correlation passes a critical value we see a sharp transition in the optimal input states (states which minimize the output entropy) from separable to maximally entangled states. We show that for a subclass of channels with some extra conditions, including the examples which we consider, the states which minimize the output entropy are the ones which maximize the mutual information.Comment: 11 pages, Latex, 4 figures, Accepted for publication in Physical Review

    Symmetrization and Entanglement of Arbitrary States of Qubits

    Full text link
    Given two arbitrary pure states âˆŁÏ•> |\phi> and âˆŁÏˆ> |\psi> of qubits or higher level states, we provide arguments in favor of states of the form 12(âˆŁÏˆ>âˆŁÏ•>+iâˆŁÏ•>âˆŁÏˆ>) \frac{1}{\sqrt{2}}(|\psi> |\phi> + i |\phi> |\psi>) instead of symmetric or anti-symmetric states, as natural candidates for optimally entangled states constructed from these states. We show that such states firstly have on the average a high value of concurrence, secondly can be constructed by a universal unitary operator independent of the input states. We also show that these states are the only ones which can be produced with perfect fidelity by any quantum operation designed for intertwining two pure states with a relative phase. A probabilistic method is proposed for producing any pre-determined relative phase into the combination of any two arbitrary states.Comment: 6 pages, 1 figur

    Interval prediction algorithm and optimal scenario making model for wind power producers bidding strategy

    Get PDF
    Nowadays, renewable energies are important sources for supplying electric power demand and a key entity of future energy markets. Therefore, wind power producers (WPPs) in most of the power systems in the world have a key role. On the other hand, the wind speed uncertainty makes WPPs deferent power generators, which in turn causes adequate bidding strategies, that leads to market rules, and the functional abilities of the turbines to penetrate the market. In this paper, a new bidding strategy has been proposed based on optimal scenario making for WPPs in a competitive power market. As known, the WPP generation is uncertain, and different scenarios must be created for wind power production. Therefore, a prediction intervals method has been improved in making scenarios and increase the accuracy of the presence of WPPs in the balancing market. Besides, a new optimization algorithm has been proposed called the grasshopper optimization algorithm to simulate the optimal bidding problem of WPPs. A set of numerical examples, as well as a case-study based on real-world data, allows illustrating and discussing the properties of the proposed method

    Photon losses depending on polarization mixedness

    Full text link
    We introduce a quantum channel describing photon losses depending on the degree of polarization mixedness. This can be regarded as a model of quantum channel with correlated errors between discrete and continuous degrees of freedom. We consider classical information over a continuous alphabet encoded on weak coherent states as well as classical information over a discrete alphabet encoded on single photons using dual rail representation. In both cases we study the one-shot capacity of the channel and its behaviour in terms of correlation between losses and polarization mixedness

    On a suggestion relating topological and quantum mechanical entanglements

    Full text link
    We analyze a recent suggestion \cite{kauffman1,kauffman2} on a possible relation between topological and quantum mechanical entanglements. We show that a one to one correspondence does not exist, neither between topologically linked diagrams and entangled states, nor between braid operators and quantum entanglers. We also add a new dimension to the question of entangling properties of unitary operators in general.Comment: RevTex, 7 eps figures, to be published in Phys. Lett. A (2004
    • 

    corecore