1,153 research outputs found

    Crossed-boson exchange contribution and Bethe-Salpeter equation

    Get PDF
    The contribution to the binding energy of a two-body system due to the crossed two-boson exchange contribution is calculated, using the Bethe-Salpeter equation. This is done for distinguishable, scalar particles interacting via the exchange of scalar massive bosons. The sensitivity of the results to the off-shell behavior of the operator accounting for this contribution is discussed. Large corrections to the Bethe-Salpeter results in the ladder approximation are found. For neutral scalar bosons, the mass obtained for the two-body system is close to what has been calculated with various forms of the instantaneous approximation, including the standard non-relativistic approach. The specific character of this result is demonstrated by a calculation involving charged bosons, which evidences a quite different pattern. Our results explain for some part those obtained by Nieuwenhuis and Tjon on a different basis. Some discrepancy appears with increasing coupling constants, suggesting the existence of sizeable contributions involving more than two-boson exchanges.Comment: 13 pages, 5 .eps figures, submitted to 'Few Body Systems

    Bounds to unitary evolution

    Full text link
    Upper and lower bounds are established for the survival probability ∣∣2||^{2} of a quantum state, in terms of the energy moments . Introducing a cut-off in the energy generally enables considerable improvement in these bounds and allows the method to be used where the exact energy moments do not exist.Comment: 5 pages, 8 figure

    The fundamental limit on the rate of quantum dynamics: the unified bound is tight

    Full text link
    The question of how fast a quantum state can evolve has attracted a considerable attention in connection with quantum measurement, metrology, and information processing. Since only orthogonal states can be unambiguously distinguished, a transition from a state to an orthogonal one can be taken as the elementary step of a computational process. Therefore, such a transition can be interpreted as the operation of "flipping a qubit", and the number of orthogonal states visited by the system per unit time can be viewed as the maximum rate of operation. A lower bound on the orthogonalization time, based on the energy spread DeltaE, was found by Mandelstam and Tamm. Another bound, based on the average energy E, was established by Margolus and Levitin. The bounds coincide, and can be exactly attained by certain initial states if DeltaE=E; however, the problem remained open of what the situation is otherwise. Here we consider the unified bound that takes into account both DeltaE and E. We prove that there exist no initial states that saturate the bound if DeltaE is not equal to E. However, the bound remains tight: for any given values of DeltaE and E, there exists a one-parameter family of initial states that can approach the bound arbitrarily close when the parameter approaches its limit value. The relation between the largest energy level, the average energy, and the orthogonalization time is also discussed. These results establish the fundamental quantum limit on the rate of operation of any information-processing system.Comment: 4 pages 1 PS figure Late

    A generalization of Margolus-Levitin bound

    Full text link
    The Margolus-Levitin lower bound on minimal time required for a state to be transformed into an orthogonal state is generalized. It is shown that for some initial states new bound is stronger than the Margolus-Levitin one.Comment: 6 pages, no figures; some comments added; final version accepted for publication in Phys. Rev.

    The casuality and/or energy-momentum conservation constraints on QCD amplitudes in small x regime

    Get PDF
    The causality and/or the energy-momentum constraints on the amplitudes of high energy processes are generalized to QCD. The constraints imply that the energetic parton may experience at most one inelastic collision only and that the number of the constituents in the light cone wave function of the projectile is increasing with the collision energy and the atomic number.Comment: 24 pages,8 figures. The paper is streamlined, some references are changed and misprints are eliminate

    Speed limits for quantum gates in multi-qubit systems

    Full text link
    We use analytical and numerical calculations to obtain speed limits for various unitary quantum operations in multiqubit systems under typical experimental conditions. The operations that we consider include single-, two-, and three-qubit gates, as well as quantum-state transfer in a chain of qubits. We find in particular that simple methods for implementing two-qubit gates generally provide the fastest possible implementations of these gates. We also find that the three-qubit Toffoli gate time varies greatly depending on the type of interactions and the system's geometry, taking only slightly longer than a two-qubit controlled-NOT (CNOT) gate for a triangle geometry. The speed limit for quantum-state transfer across a qubit chain is set by the maximum spin-wave speed in the chain.Comment: 7 pages (two-column), 2 figures, 2 table

    Ultra-short solitons and kinetic effects in nonlinear metamaterials

    Full text link
    We present a stability analysis of a modified nonlinear Schroedinger equation describing the propagation of ultra-short pulses in negative refractive index media. Moreover, using methods of quantum statistics, we derive a kinetic equation for the pulses, making it possible to analyze and describe partial coherence in metamaterials. It is shown that a novel short pulse soliton, which is found analytically, can propagate in the medium.Comment: 6 pages, 2 figures, to appear in Phys. Rev.

    Optimal Quantum Clocks

    Get PDF
    A quantum clock must satisfy two basic constraints. The first is a bound on the time resolution of the clock given by the difference between its maximum and minimum energy eigenvalues. The second follows from Holevo's bound on how much classical information can be encoded in a quantum system. We show that asymptotically, as the dimension of the Hilbert space of the clock tends to infinity, both constraints can be satisfied simultaneously. The experimental realization of such an optimal quantum clock using trapped ions is discussed.Comment: 4 pages, revtex, 1 figure, revision contains some new result

    Product Integral Formalism and Non-Abelian Stokes Theorem

    Get PDF
    We make use of the properties of product integrals to obtain a surface product integral representation for the Wilson loop operator. The result can be interpreted as the non-abelian version of Stokes' theorem.Comment: Latex; condensed version of hep-th/9903221, to appear in Jour. Math. Phy

    Monopole Condensation in full QCD using the Schroedinger Functional

    Get PDF
    We use a lattice thermal partition functional to study Abelian monopole condensation in full QCD with Nf=2N_f=2 staggered fermions. We present preliminary results on 163×416^3\times4 and 323×432^3\times4 lattices.Comment: Lattice2002(topology). 3 pages, 3 figure
    • 

    corecore