66 research outputs found

    The Isospectral Dirac Operator on the 4-dimensional Orthogonal Quantum Sphere

    Full text link
    Equivariance under the action of Uq(so(5)) is used to compute the left regular and (chiral) spinorial representations of the algebra of the orthogonal quantum 4-sphere S^4_q. These representations are the constituents of a spectral triple on this sphere with a Dirac operator which is isospectral to the canonical one on the round undeformed four-sphere and which gives metric dimension four for the noncommutative geometry. Non-triviality of the geometry is proved by pairing the associated Fredholm module with an `instanton' projection. We also introduce a real structure which satisfies all required properties modulo smoothing operators.Comment: 40 pages, no figures, Latex. v2: Title changed. Sect. 9 on real structure completely rewritten and results strengthened. Additional minor changes throughout the pape

    Local Index Formula on the Equatorial Podles Sphere

    Full text link
    We discuss spectral properties of the equatorial Podles sphere. As a preparation we also study the `degenerate' (i.e. q=0q=0) case (related to the quantum disk). We consider two different spectral triples: one related to the Fock representation of the Toeplitz algebra and the isopectral one. After the identification of the smooth pre-C∗C^*-algebra we compute the dimension spectrum and residues. We check the nontriviality of the (noncommutative) Chern character of the associated Fredholm modules by computing the pairing with the fundamental projector of the C∗C^*-algebra (the nontrivial generator of the K0K_0-group) as well as the pairing with the qq-analogue of the Bott projector. Finally, we show that the local index formula is trivially satisfied.Comment: 18 pages, no figures; minor correction

    Aharonov-Bohm Effect with ÎŽ\delta--type Interaction

    Full text link
    A quantum particle interacting with a thin solenoid and a magnetic flux is described by a five-parameter family of Hamilton operators, obtained via the method of self-adjoint extensions. One of the parameters, the value of the flux, corresponds to the Aharonov-Bohm effect; the other four parameters correspond to the strength of a singular potential barrier. The spectrum and eigenstates are computed and the scattering problem is solved.Comment: 19 pages, Late

    Simple Dynamics on the Brane

    Full text link
    We apply methods of dynamical systems to study the behaviour of the Randall-Sundrum models. We determine evolutionary paths for all possible initial conditions in a 2-dimensional phase space and we investigate the set of accelerated models. The simplicity of our formulation in comparison to some earlier studies is expressed in the following: our dynamical system is a 2-dimensional Hamiltonian system, and what is more advantageous, it is free from the degeneracy of critical points so that the system is structurally stable. The phase plane analysis of Randall-Sundrum models with isotropic Friedmann geometry clearly shows that qualitatively we deal with the same types of evolution as in general relativity, although quantitatively there are important differences.Comment: an improved version, 34 pages, 9 eps figure

    Strings at future singularities

    Full text link
    We discuss the behaviour of strings propagating in spacetimes which allow future singularities of either a sudden future or a Big-Rip type. We show that in general the invariant string size remains finite at sudden future singularities while it grows to infinity at a Big-Rip. This claim is based on the discussion of both the tensile and null strings. In conclusion, strings may survive a sudden future singularity, but not a Big-Rip where they are infinitely stretched.Comment: REVTEX 4.0, 4 pages, no figures, references adde

    Noncommutative Geometry and the standard model with neutrino mixing

    Get PDF
    We show that allowing the metric dimension of a space to be independent of its KO-dimension and turning the finite noncommutative geometry F-- whose product with classical 4-dimensional space-time gives the standard model coupled with gravity--into a space of KO-dimension 6 by changing the grading on the antiparticle sector into its opposite, allows to solve three problems of the previous noncommutative geometry interpretation of the standard model of particle physics: The finite geometry F is no longer put in "by hand" but a conceptual understanding of its structure and a classification of its metrics is given. The fermion doubling problem in the fermionic part of the action is resolved. The spectral action of our joint work with Chamseddine now automatically generates the full standard model coupled with gravity with neutrino mixing and see-saw mechanism for neutrino masses. The predictions of the Weinberg angle and the Higgs scattering parameter at unification scale are the same as in our joint work but we also find a mass relation (to be imposed at unification scale).Comment: Typos removed, to appear in JHE

    Strings in Homogeneous Background Spacetimes

    Full text link
    The string equations of motion for some homogeneous (Kantowski-Sachs, Bianchi I and Bianchi IX) background spacetimes are given, and solved explicitly in some simple cases. This is motivated by the recent developments in string cosmology, where it has been shown that, under certain circumstances, such spacetimes appear as string-vacua. Both tensile and null strings are considered. Generally, it is much simpler to solve for the null strings since then we deal with the null geodesic equations of General Relativity plus some additional constraints. We consider in detail an ansatz corresponding to circular strings, and we discuss the possibility of using an elliptic-shape string ansatz in the case of homogeneous (but anisotropic) backgrounds.Comment: 25 pages, REVTE

    Quantum teardrops

    Full text link
    Algebras of functions on quantum weighted projective spaces are introduced, and the structure of quantum weighted projective lines or quantum teardrops are described in detail. In particular the presentation of the coordinate algebra of the quantum teardrop in terms of generators and relations and classification of irreducible *-representations are derived. The algebras are then analysed from the point of view of Hopf-Galois theory or the theory of quantum principal bundles. Fredholm modules and associated traces are constructed. C*-algebras of continuous functions on quantum weighted projective lines are described and their K-groups computed.Comment: 18 page

    Null Strings in Schwarzschild Spacetime

    Get PDF
    The null string equations of motion and constraints in the Schwarzschild spacetime are given. The solutions are those of the null geodesics of General Relativity appended by a null string constraint in which the "constants of motion" depend on the world-sheet spatial coordinate. Because of the extended nature of a string, the physical interpretation of the solutions is completely different from the point particle case. In particular, a null string is generally not propagating in a plane through the origin, although each of its individual points is. Some special solutions are obtained and their physical interpretation is given. Especially, the solution for a null string with a constant radial coordinate rr moving vertically from the south pole to the north pole around the photon sphere, is presented. A general discussion of classical null/tensile strings as compared to massless/massive particles is given. For instance, tensile circular solutions with a constant radial coordinate rr do not exist at all. The results are discussed in relation to the previous literature on the subject.Comment: 16 pages, REVTEX, no figure

    Differential and Twistor Geometry of the Quantum Hopf Fibration

    Full text link
    We study a quantum version of the SU(2) Hopf fibration S7→S4S^7 \to S^4 and its associated twistor geometry. Our quantum sphere Sq7S^7_q arises as the unit sphere inside a q-deformed quaternion space Hq2\mathbb{H}^2_q. The resulting four-sphere Sq4S^4_q is a quantum analogue of the quaternionic projective space HP1\mathbb{HP}^1. The quantum fibration is endowed with compatible non-universal differential calculi. By investigating the quantum symmetries of the fibration, we obtain the geometry of the corresponding twistor space CPq3\mathbb{CP}^3_q and use it to study a system of anti-self-duality equations on Sq4S^4_q, for which we find an `instanton' solution coming from the natural projection defining the tautological bundle over Sq4S^4_q.Comment: v2: 38 pages; completely rewritten. The crucial difference with respect to the first version is that in the present one the quantum four-sphere, the base space of the fibration, is NOT a quantum homogeneous space. This has important consequences and led to very drastic changes to the paper. To appear in CM
    • 

    corecore