109,455 research outputs found

    Numerical analysis of the hydrodynamic behaviour of immiscible metallic alloys in twin-screw rheomixing process

    Get PDF
    A numerical analysis by a VOF method is presented for studying the hydrodynamic mechanisms of the rheomixing process by a twin-screw extruder (TSE). The simplified flow field is established based on a systematic analysis of flow features of immiscible alloys in TSE rheomixing process. The studies focus on the fundamental microstructure mechanisms of rheological behaviour in shear-induced turbulent flows. It is noted that the microstructure of immiscible alloys in the mixing process is strongly influenced by the interaction between droplets, which is controlled by shearing forces, viscosity ratio, turbulence, and shearing time. The numerical results show a good qualitative agreement with the experimental results, and are useful for further optimisation design of prototypical rheomixing processes

    Properties of Resonating-Valence-Bond Spin Liquids and Critical Dimer Models

    Full text link
    We use Monte Carlo simulations to study properties of Anderson's resonating-valence-bond (RVB) spin-liquid state on the square lattice (i.e., the equal superposition of all pairing of spins into nearest-neighbor singlet pairs) and compare with the classical dimer model (CDM). The latter system also corresponds to the ground state of the Rokhsar-Kivelson quantum dimer model at its critical point. We find that although spin-spin correlations decay exponentially in the RVB, four-spin valence-bond-solid (VBS) correlations are critical, qualitatively like the well-known dimer-dimer correlations of the CDM, but decaying more slowly (as 1/ra1/r^a with a1.20a \approx 1.20, compared with a=2a=2 for the CDM). We also compute the distribution of monomer (defect) pair separations, which decay by a larger exponent in the RVB than in the CDM. We further study both models in their different winding number sectors and evaluate the relative weights of different sectors. Like the CDM, all the observed RVB behaviors can be understood in the framework of a mapping to a "height" model characterized by a gradient-squared stiffness constant KK. Four independent measurements consistently show a value KRVB1.6KCDMK_{RVB} \approx 1.6 K_{CDM}, with the same kinds of numerical evaluations of KCDMK_{CDM} give results in agreement with the rigorously known value KCDM=π/16K_{CDM}=\pi/16. The background of a nonzero winding number gradient W/LW/L introduces spatial anisotropies and an increase in the effective K, both of which can be understood as a consequence of anharmonic terms in the height-model free energy, which are of relevance to the recently proposed scenario of "Cantor deconfinement" in extended quantum dimer models. We also study ensembles in which fourth-neighbor (bipartite) bonds are allowed, at a density controlled by a tunable fugacity, resulting (as expected) in a smooth reduction of K.Comment: 26 pages, 21 figures. v3: final versio

    A long-lived spin-orbit-coupled degenerate dipolar Fermi gas

    Full text link
    We describe the creation of a long-lived spin-orbit-coupled gas of quantum degenerate atoms using the most magnetic fermionic element, dysprosium. Spin-orbit-coupling arises from a synthetic gauge field created by the adiabatic following of degenerate dressed states comprised of optically coupled components of an atomic spin. Because of dysprosium's large electronic orbital angular momentum and large magnetic moment, the lifetime of the gas is limited not by spontaneous emission from the light-matter coupling, as for gases of alkali-metal atoms, but by dipolar relaxation of the spin. This relaxation is suppressed at large magnetic fields due to Fermi statistics. We observe lifetimes up to 400 ms, which exceeds that of spin-orbit-coupled fermionic alkali atoms by a factor of 10-100, and is close to the value obtained from a theoretical model. Elastic dipolar interactions are also observed to influence the Rabi evolution of the spin, revealing an interacting fermionic system. The long lifetime of this weakly interacting spin-orbit-coupled degenerate Fermi gas will facilitate the study of quantum many-body phenomena manifest at longer timescales, with exciting implications for the exploration of exotic topological quantum liquids.Comment: 11 pages, 8 figures, one appendi

    Universally consistent vertex classification for latent positions graphs

    Full text link
    In this work we show that, using the eigen-decomposition of the adjacency matrix, we can consistently estimate feature maps for latent position graphs with positive definite link function κ\kappa, provided that the latent positions are i.i.d. from some distribution F. We then consider the exploitation task of vertex classification where the link function κ\kappa belongs to the class of universal kernels and class labels are observed for a number of vertices tending to infinity and that the remaining vertices are to be classified. We show that minimization of the empirical φ\varphi-risk for some convex surrogate φ\varphi of 0-1 loss over a class of linear classifiers with increasing complexities yields a universally consistent classifier, that is, a classification rule with error converging to Bayes optimal for any distribution F.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1112 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Comment on “Does the Hydrated Electron Occupy a Cavity?” [Science 329, 65, (2010)]

    Get PDF
    Exact quantum mechanical calculations examining a recently implemented pseudopotential show that the results reported by Larsen et al. are based on a model that contains inaccuracies. We illustrate that, in contrast to the model used, the true electron-water interaction is repulsive in the region relevant to the reported extended electron distribution, consistent with the cavity model. The reported simulated properties of the hydrated electron are shown to be very sensitive to this problem
    corecore