109,455 research outputs found
Numerical analysis of the hydrodynamic behaviour of immiscible metallic alloys in twin-screw rheomixing process
A numerical analysis by a VOF method is presented for studying the hydrodynamic mechanisms of the rheomixing process by a twin-screw extruder (TSE). The simplified flow field is established based on a systematic analysis of flow features of immiscible alloys in TSE rheomixing process. The studies focus on the fundamental microstructure mechanisms of rheological behaviour in shear-induced turbulent flows. It is noted that the microstructure of immiscible alloys in the mixing process is strongly influenced by the interaction between droplets, which is controlled by shearing forces, viscosity ratio, turbulence, and shearing time. The numerical results show a good qualitative agreement with the experimental results, and are useful for further optimisation design of prototypical rheomixing processes
Properties of Resonating-Valence-Bond Spin Liquids and Critical Dimer Models
We use Monte Carlo simulations to study properties of Anderson's
resonating-valence-bond (RVB) spin-liquid state on the square lattice (i.e.,
the equal superposition of all pairing of spins into nearest-neighbor singlet
pairs) and compare with the classical dimer model (CDM). The latter system also
corresponds to the ground state of the Rokhsar-Kivelson quantum dimer model at
its critical point. We find that although spin-spin correlations decay
exponentially in the RVB, four-spin valence-bond-solid (VBS) correlations are
critical, qualitatively like the well-known dimer-dimer correlations of the
CDM, but decaying more slowly (as with , compared with
for the CDM). We also compute the distribution of monomer (defect) pair
separations, which decay by a larger exponent in the RVB than in the CDM. We
further study both models in their different winding number sectors and
evaluate the relative weights of different sectors. Like the CDM, all the
observed RVB behaviors can be understood in the framework of a mapping to a
"height" model characterized by a gradient-squared stiffness constant . Four
independent measurements consistently show a value , with the same kinds of numerical evaluations of give
results in agreement with the rigorously known value . The
background of a nonzero winding number gradient introduces spatial
anisotropies and an increase in the effective K, both of which can be
understood as a consequence of anharmonic terms in the height-model free
energy, which are of relevance to the recently proposed scenario of "Cantor
deconfinement" in extended quantum dimer models. We also study ensembles in
which fourth-neighbor (bipartite) bonds are allowed, at a density controlled by
a tunable fugacity, resulting (as expected) in a smooth reduction of K.Comment: 26 pages, 21 figures. v3: final versio
A long-lived spin-orbit-coupled degenerate dipolar Fermi gas
We describe the creation of a long-lived spin-orbit-coupled gas of quantum
degenerate atoms using the most magnetic fermionic element, dysprosium.
Spin-orbit-coupling arises from a synthetic gauge field created by the
adiabatic following of degenerate dressed states comprised of optically coupled
components of an atomic spin. Because of dysprosium's large electronic orbital
angular momentum and large magnetic moment, the lifetime of the gas is limited
not by spontaneous emission from the light-matter coupling, as for gases of
alkali-metal atoms, but by dipolar relaxation of the spin. This relaxation is
suppressed at large magnetic fields due to Fermi statistics. We observe
lifetimes up to 400 ms, which exceeds that of spin-orbit-coupled fermionic
alkali atoms by a factor of 10-100, and is close to the value obtained from a
theoretical model. Elastic dipolar interactions are also observed to influence
the Rabi evolution of the spin, revealing an interacting fermionic system. The
long lifetime of this weakly interacting spin-orbit-coupled degenerate Fermi
gas will facilitate the study of quantum many-body phenomena manifest at longer
timescales, with exciting implications for the exploration of exotic
topological quantum liquids.Comment: 11 pages, 8 figures, one appendi
Universally consistent vertex classification for latent positions graphs
In this work we show that, using the eigen-decomposition of the adjacency
matrix, we can consistently estimate feature maps for latent position graphs
with positive definite link function , provided that the latent
positions are i.i.d. from some distribution F. We then consider the
exploitation task of vertex classification where the link function
belongs to the class of universal kernels and class labels are observed for a
number of vertices tending to infinity and that the remaining vertices are to
be classified. We show that minimization of the empirical -risk for
some convex surrogate of 0-1 loss over a class of linear classifiers
with increasing complexities yields a universally consistent classifier, that
is, a classification rule with error converging to Bayes optimal for any
distribution F.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1112 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Comment on “Does the Hydrated Electron Occupy a Cavity?” [Science 329, 65, (2010)]
Exact quantum mechanical calculations examining a recently implemented pseudopotential show that the results reported by Larsen et al. are based on a model that contains inaccuracies. We illustrate that, in contrast to the model used, the true electron-water interaction is repulsive in the region relevant to the reported extended electron distribution, consistent with the cavity model. The reported simulated properties of the hydrated electron are shown to be very sensitive to this problem
- …
