3,035 research outputs found

    Plane wave/pseudopotential implementation of excited state gradients in density functional linear response theory: a new route via implicit differentiation

    Full text link
    This work presents the formalism and implementation of excited state nuclear forces within density functional linear response theory (TDDFT) using a plane wave basis set. An implicit differentiation technique is developed for computing nonadiabatic coupling between Kohn-Sham molecular orbital wavefunctions as well as gradients of orbital energies which are then used to calculate excited state nuclear forces. The algorithm has been implemented in a plane wave/pseudopotential code taking into account only a reduced active subspace of molecular orbitals. It is demonstrated for the H2_2 and N2_2 molecules that the analytical gradients rapidly converge to the exact forces when the active subspace of molecular orbitals approaches completeness

    Slip or not slip? A methodical examination of the interface formation model using two-dimensional droplet spreading on a horizontal planar substrate as a prototype system

    Full text link
    We consider the spreading of a thin two-dimensional droplet on a planar substrate as a prototype system to compare the contemporary model for contact line motion based on interface formation of Shikhmurzaev [Int. J. Multiphas. Flow 19, 589 (1993)], to the more commonly used continuum fluid dynamical equations augmented with the Navier-slip condition. Considering quasistatic droplet evolution and using the method of matched asymptotics, we find that the evolution of the droplet radius using the interface formation model reduces to an equivalent expression for a slip model, where the prescribed microscopic dynamic contact angle has a velocity dependent correction to its static value. This result is found for both the original interface formation model formulation and for a more recent version, where mass transfer from bulk to surface layers is accounted for through the boundary conditions. Various features of the model, such as the pressure behaviour and rolling motion at the contact line, and their relevance, are also considered in the prototype system we adopt.Comment: 45 pages, 18 figure

    Individuation and holistic processing of faces in rhesus monkeys

    Get PDF
    Despite considerable evidence that neural activity in monkeys reflects various aspects of face perception, relatively little is known about monkeys' face processing abilities. Two characteristics of face processing observed in humans are a subordinate-level entry point, here, the default recognition of faces at the subordinate, rather than basic, level of categorization, and holistic effects, i.e. perception of facial displays as an integrated whole. The present study used an adaptation paradigm to test whether untrained rhesus macaques (Macaca mulatta) display these hallmarks of face processing. In experiments 1 and 2, macaques showed greater rebound from adaptation to conspecific faces than to other animals at the individual or subordinate level. In experiment 3, exchanging only the bottom half of a monkey face produced greater rebound in aligned than in misaligned composites, indicating that for normal, aligned faces, the new bottom half may have influenced the perception of the whole face. Scan path analysis supported this assertion: during rebound, fixation to the unchanged eye region was renewed, but only for aligned stimuli. These experiments show that macaques naturally display the distinguishing characteristics of face processing seen in humans and provide the first clear demonstration that holistic information guides scan paths for conspecific faces

    Orthogonality catastrophe in a composite fermion liquid

    Full text link
    We discuss the emergence of an orthogonality catastrophe in the response of a composite fermion liquid as the filling factor \nu approaches 1/2m, where m=1,2,3.... A tunneling experiment is proposed in which dramatic changes in the I-V characteristic should be observable as \nu is varied. Explicit I-V characteristics calculated within the so-called Modified Random Phase Approximation, are provided for \nu=1/3 -> \nu=1/2.Comment: Latex two-column 6 pages including 5 figure

    Cavity approach for real variables on diluted graphs and application to synchronization in small-world lattices

    Full text link
    We study XY spin systems on small world lattices for a variety of graph structures, e.g. Poisson and scale-free, superimposed upon a one dimensional chain. In order to solve this model we extend the cavity method in the one pure-state approximation to deal with real-valued dynamical variables. We find that small-world architectures significantly enlarge the region in parameter space where synchronization occurs. We contrast the results of population dynamics performed on a truncated set of cavity fields with Monte Carlo simulations and find excellent agreement. Further, we investigate the appearance of replica symmetry breaking in the spin-glass phase by numerically analyzing the proliferation of pure states in the message passing equations.Comment: 10 pages, 3 figure

    Loudness perceptions influence feelings of interpersonal closeness and protect against detrimental psychological effects of social exclusion

    Get PDF
    We propose that perceptions of auditory loudness and interpersonal closeness are bidirectionally related. Across 12 experiments (total N = 2219; 10 preregistered; with Singaporean, British, U.S. American, Indian, and Australian participants), we demonstrated that louder audio made people feel physically (Study 1a) and socially (Study 1b) closer to others, presumably because of loudness activates interpersonal closeness-related concepts implicitly (Studies 1c, 1d). This loudness-interpersonal closeness effect was observed across diverse samples (Studies 2a, 3a, S1), for longer listening intervals (Study 2b), and in natural settings (Studies 3a, 3b). Conversely, individuals made to feel socially excluded rated their surroundings as quieter (Study 4). Furthermore, following social exclusion, individuals showed a preference for louder volume (Study 5). Finally, exposure to loud stimuli mitigated detrimental psychological effects of social exclusion (Study 6). Theoretical implications for the social cognition of loudness, social exclusion and compensatory strategies, and practical implications for ameliorating loneliness are discussed

    Stability analysis of static solutions in a Josephson junction

    Full text link
    We present all the possible solutions of a Josephson junction with bias current and magnetic field with both inline and overlap geometry, and examine their stability. We follow the bifurcation of new solutions as we increase the junction length. The analytical results, in terms of elliptic functions in the case of inline geometry, are in agreement with the numerical calculations and explain the strong hysteretic phenomena typically seen in the calculation of the maximum tunneling current. This suggests a different experimental approach based on the use, instead of the external magnetic field the modulus of the elliptic function or the related quantity the total magnetic flux to avoid hysteretic behavior and unfold the overlapping Imax(H)I_{max}(H) curves.Comment: 36 pages with 17 figure

    Thermodynamic instabilities in one dimensional particle lattices: a finite-size scaling approach

    Full text link
    One-dimensional thermodynamic instabilities are phase transitions not prohibited by Landau's argument, because the energy of the domain wall (DW) which separates the two phases is infinite. Whether they actually occur in a given system of particles must be demonstrated on a case-by-case basis by examining the (non-) analyticity properties of the corresponding transfer integral (TI) equation. The present note deals with the generic Peyrard-Bishop model of DNA denaturation. In the absence of exact statements about the spectrum of the singular TI equation, I use Gauss-Hermite quadratures to achieve a single-parameter-controlled approach to rounding effects; this allows me to employ finite-size scaling concepts in order to demonstrate that a phase transition occurs and to derive the critical exponents.Comment: 5 pages, 6 figures, subm. to Phys. Rev.

    Resonant electron transmission through a finite quantum spin chain

    Full text link
    Electron transport in a finite one dimensional quantum spin chain (with ferromagnetic exchange) is studied within an s−ds-d exchange Hamiltonian. Spin transfer coefficients strongly depend on the sign of the s−ds-d exchange constant. For a ferromagnetic coupling, they exhibit a novel resonant pattern, reflecting the salient features of the combined electron-spin system. Spin-flip processes are inelastic and feasible at finite voltage or at finite temperature.Comment: 4 pages including 4 .eps figure

    An Investigation of Coach Behaviors, Goal Motives, and Implementation Intentions as Predictors of Well-Being in Sport

    Get PDF
    The present study aimed to expand upon Smith, Ntoumanis, and Duda’s (2007) research by investigating the influence of coach behaviors and implementation intentions on goal striving in sport. Structural equation modeling analysis with a sample of 108 athletes revealed coach behaviors as predictors of goal motives, which in turn predicted psychological well-being after 8 weeks. Supplementary regression analyses showed no interaction between autonomous goal motives and implementation intentions; however, a synergistic effect was identified for controlled goal motives such that controlled motives furnished with implementation intentions resulted in lower well-being than controlled motives alone. In further analyses, the motives underlying an implementation intention were found to mediate the paths from goal motives to well-being. The findings are discussed in terms of the roles played by goal motives, implementation intentions, and implementation intention motives during goal striving
    • …
    corecore