9,822 research outputs found

    Limits on the validity of the thin-layer model of the ionosphere for radio interferometric calibration

    Get PDF
    For a ground-based radio interferometer observing at low frequencies, the ionosphere causes propagation delays and refraction of cosmic radio waves which result in phase errors in the received signal. These phase errors can be corrected using a calibration method that assumes a two-dimensional phase screen at a fixed altitude above the surface of the Earth, known as the thin-layer model. Here we investigate the validity of the thin-layer model and provide a simple equation with which users can check when this approximation can be applied to observations for varying time of day, zenith angle, interferometer latitude, baseline length, ionospheric electron content and observing frequency.Comment: 8 pages, 10 figures, accepted MNRA

    Corrections to Scaling in the Phase-Ordering Dynamics of a Vector Order Parameter

    Full text link
    Corrections to scaling, associated with deviations of the order parameter from the scaling morphology in the initial state, are studied for systems with O(n) symmetry at zero temperature in phase-ordering kinetics. Including corrections to scaling, the equal-time pair correlation function has the form C(r,t) = f_0(r/L) + L^{-omega} f_1(r/L) + ..., where L is the coarsening length scale. The correction-to-scaling exponent, omega, and the correction-to-scaling function, f_1(x), are calculated for both nonconserved and conserved order parameter systems using the approximate Gaussian closure theory of Mazenko. In general, omega is a non-trivial exponent which depends on both the dimensionality, d, of the system and the number of components, n, of the order parameter. Corrections to scaling are also calculated for the nonconserved 1-d XY model, where an exact solution is possible.Comment: REVTeX, 20 pages, 2 figure

    Non-equilibrium Phase-Ordering with a Global Conservation Law

    Full text link
    In all dimensions, infinite-range Kawasaki spin exchange in a quenched Ising model leads to an asymptotic length-scale L(ρt)1/2t1/3L \sim (\rho t)^{1/2} \sim t^{1/3} at T=0T=0 because the kinetic coefficient is renormalized by the broken-bond density, ρL1\rho \sim L^{-1}. For T>0T>0, activated kinetics recovers the standard asymptotic growth-law, Lt1/2L \sim t^{1/2}. However, at all temperatures, infinite-range energy-transport is allowed by the spin-exchange dynamics. A better implementation of global conservation, the microcanonical Creutz algorithm, is well behaved and exhibits the standard non-conserved growth law, Lt1/2L \sim t^{1/2}, at all temperatures.Comment: 2 pages and 2 figures, uses epsf.st

    Dynamics and delocalisation transition for an interface driven by a uniform shear flow

    Full text link
    We study the effect of a uniform shear flow on an interface separating the two broken-symmetry ordered phases of a two-dimensional system with nonconserved scalar order parameter. The interface, initially flat and perpendicular to the flow, is distorted by the shear flow. We show that there is a critical shear rate, \gamma_c, proportional to 1/L^2, (where L is the system width perpendicular to the flow) below which the interface can sustain the shear. In this regime the countermotion of the interface under its curvature balances the shear flow, and the stretched interface stabilizes into a time-independent shape whose form we determine analytically. For \gamma > \gamma_c, the interface acquires a non-zero velocity, whose profile is shown to reach a time-independent limit which we determine exactly. The analytical results are checked by numerical integration of the equations of motion.Comment: 5 page

    The mechanical response of semiflexible networks to localized perturbations

    Full text link
    Previous research on semiflexible polymers including cytoskeletal networks in cells has suggested the existence of distinct regimes of elastic response, in which the strain field is either uniform (affine) or non-uniform (non-affine) under external stress. Associated with these regimes, it has been further suggested that a new fundamental length scale emerges, which characterizes the scale for the crossover from non-affine to affine deformations. Here, we extend these studies by probing the response to localized forces and force dipoles. We show that the previously identified nonaffinity length [D.A. Head et al. PRE 68, 061907 (2003).] controls the mesoscopic response to point forces and the crossover to continuum elastic behavior at large distances.Comment: 16 pages, 18 figures; substantial changes to text and figures to clarify the crossover to continuum elasticity and the role of finite-size effect

    Elastic electron scattering by laser-excited 138Ba( ... 6s6p 1P1) atoms

    Get PDF
    The results of a joint experimental and theoretical study concerning elastic electron scattering by laser-excited 138Ba( ... 6s6p 1P1) atoms are described. These studies demonstrate several important aspects of elastic electron collisions with coherently excited atoms, and are the first such studies. From the measurements, collision and coherence parameters, as well as cross sections associated with an atomic ensemble prepared with an arbitrary in-plane laser geometry and linear polarization (with respect to the collision frame), or equivalently with any magnetic sublevel superposition, have been obtained at 20 eV impact energy and at 10°, 15° and 20° scattering angles. The convergent close-coupling (CCC) method was used within the non-relativistic LS-coupling framework to calculate the magnetic sublevel scattering amplitudes. From these amplitudes all the parameters and cross sections at 20 eV impact energy were extracted in the full angular range in 1° steps. The experimental and theoretical results were found to be in good agreement, indicating that the CCC method can be reliably applied to elastic scattering by 138Ba( ... 6s6p 1P1) atoms, and possibly to other heavy elements when spin-orbit coupling effects are negligible. Small but significant asymmetry was observed in the cross sections for scattering to the left and to the right. It was also found that elastic electron scattering by the initially isotropic atomic ensemble resulted in the creation of significant alignment. As a byproduct of the present studies, elastic scattering cross sections for metastable 138Ba atoms were also obtained

    Dysphonia secondary to traumatic avulsion of the vocal fold in infants

    Get PDF
    Objective: Airway compromise due to paediatric intubation injuries is well documented; however, intubation injuries may also cause severe voice disorders. We report our experience and review the world literature on the voice effects of traumatic paediatric intubation. Case series: We report five cases of children referred to Great Ormond Street Hospital for Children who suffered traumatic avulsion of the vocal fold at the time of, or secondary to, endotracheal intubation. All children had significant dysphonia and underwent specialist voice therapy. Conclusions: The mechanisms of injury, risk factors and management of the condition are discussed. Children suffering traumatic intubation require follow up throughout childhood and beyond puberty as their vocal needs and abilities change. At the time of writing, none of the reported patients had yet undergone reconstructive or medialisation surgery. However, regular specialist voice therapy evaluation is recommended for such patients, with consideration of phonosurgical techniques including injection laryngoplasty or thyroplasty

    Dynamic scaling of fronts in the quantum XX chain

    Full text link
    The dynamics of the transverse magnetization in the zero-temperature XX chain is studied with emphasis on fronts emerging from steplike initial magnetization profiles. The fronts move with fixed velocity and display a staircase like internal structure whose dynamic scaling is explored both analytically and numerically. The front region is found to spread with time sub-diffusively with the height and the width of the staircase steps scaling as t^(-1/3) and t^1/3, respectively. The areas under the steps are independent of time, thus the magnetization relaxes in quantized "steps" of spin-flips.Comment: 4 pages, 3 eps figures, RevTe

    The Complexity of Ising Spin Glasses

    Full text link
    We compute the complexity (logarithm of the number of TAP states) associated with minima and index-one saddle points of the TAP free energy. Higher-index saddles have smaller complexities. The two leading complexities are equal, consistent with the Morse theorem on the total number of turning points, and have the value given in [A. J. Bray and M. A. Moore, J. Phys. C 13, L469 (1980)]. In the thermodynamic limit, TAP states of all free energies become marginally stable.Comment: Typos correcte
    corecore