839 research outputs found
Signatures of the Milky Way's Dark Disk in Current and Future Experiments
In hierarchical structure formation models of disk galaxies, a dark matter
disk forms as massive satellites are preferentially dragged into the disk-plane
where they dissolve. Here, we quantify the importance of this dark disk for
direct and indirect dark matter detection. The low velocity of the dark disk
with respect to the Earth enhances detection rates in direct detection
experiments at low recoil energy. For WIMP masses M_{WIMP} >~ 50 GeV, the
detection rate increases by up to a factor of 3 in the 5 - 20 keV recoil energy
range. Comparing this with rates at higher energy is sensitive to M_{WIMP},
providing stronger mass constraints particularly for M_{WIMP}>~100 GeV. The
annual modulation signal is significantly boosted by the dark disk and the
modulation phase is shifted by ~3 weeks relative to the dark halo. The
variation of the observed phase with recoil energy determines M_{WIMP}, once
the dark disk properties are fixed by future astronomical surveys. The low
velocity of the particles in the dark disk with respect to the solar system
significantly enhances the capture rate of WIMPs in the Sun, leading to an
increased flux of neutrinos from the Sun which could be detected in current and
future neutrino telescopes. The dark disk contribution to the muon flux from
neutrino back conversion at the Earth is increased by a factor of ~5 compared
to the SHM, for rho_d/rho_h=0.5.Comment: 5 pages, 7 figures, To appear in the proceedings of Identification of
Dark Matter 2008 (IDM2008), Stockholm, 18-22 August 2008; corrected one
referenc
Neutrino physics with multi-ton scale liquid xenon detectors
We study the sensitivity of large-scale xenon detectors to low-energy solar
neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double
beta decay. As a concrete example, we consider the xenon part of the proposed
DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform
detailed Monte Carlo simulations of the expected backgrounds, considering
realistic energy resolutions and thresholds in the detector. In a low-energy
window of 2-30 keV, where the sensitivity to solar pp and Be-neutrinos is
highest, an integrated pp-neutrino rate of 5900 events can be reached in a
fiducial mass of 14 tons of natural xenon, after 5 years of data. The
pp-neutrino flux could thus be measured with a statistical uncertainty around
1%, reaching the precision of solar model predictions. These low-energy solar
neutrinos will be the limiting background to the dark matter search channel for
WIMP-nucleon cross sections below 210 cm and WIMP
masses around 50 GeVc, for an assumed 99.5% rejection of
electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils
from coherent scattering of solar neutrinos will limit the sensitivity to WIMP
masses below 6 GeVc to cross sections above
410cm. DARWIN could reach a competitive half-life
sensitivity of 5.610 y to the neutrinoless double beta decay of
Xe after 5 years of data, using 6 tons of natural xenon in the central
detector region.Comment: 17 pages, 4 figure
The Enigma of the Dark Matter
One of the great scientific enigmas still unsolved, the existence of dark
matter, is reviewed. Simple gravitational arguments imply that most of the mass
in the Universe, at least 90%, is some (unknown) non-luminous matter. Some
particle candidates for dark matter are discussed with particular emphasis on
the neutralino, a particle predicted by the supersymmetric extension of the
Standard Model of particle physics. Experiments searching for these relic
particles, carried out by many groups around the world, are also discussed.
These experiments are becoming more sensitive every year and in fact one of the
collaborations claims that the first direct evidence for dark matter has
already been observed.Comment: Invited review article for the journal Contemporary Physics. The
level is suitable for researchers which are non-specialists in the subject,
and also for students. Latex, 20 pages, 5 figure
Gator: a low-background counting facility at the Gran Sasso Underground Laboratory
A low-background germanium spectrometer has been installed and is being
operated in an ultra-low background shield (the Gator facility) at the Gran
Sasso underground laboratory in Italy (LNGS). With an integrated rate of ~0.16
events/min in the energy range between 100-2700 keV, the background is
comparable to those of the world's most sensitive germanium detectors. After a
detailed description of the facility, its background sources as well as the
calibration and efficiency measurements are introduced. Two independent
analysis methods are described and compared using examples from selected sample
measurements. The Gator facility is used to screen materials for XENON, GERDA,
and in the context of next-generation astroparticle physics facilities such as
DARWIN.Comment: 14 pages, 6 figures, published versio
First Results from the Heidelberg Dark Matter Search Experiment
The Heidelberg Dark Matter Search Experiment (HDMS) is a new ionization
Germanium experiment in a special design. Two concentric Ge crystals are housed
by one cryostat system, the outer detector acting as an effective shield
against multiple scattered photons for the inner crystal, which is the actual
dark matter target. We present first results after successfully running the
prototype detector for a period of about 15 months in the Gran Sasso
Underground Laboratory. We analyze the results in terms of limits on
WIMP-nucleon cross sections and present the status of the full scale
experiment, which will be installed in Gran Sasso in the course of this year.Comment: 11 pages, latex, 4 tables, 10 figures; submitted to Phys. Rev.
Signatures of Dark Matter Scattering Inelastically Off Nuclei
Direct dark matter detection focuses on elastic scattering of dark matter
particles off nuclei. In this study, we explore inelastic scattering where the
nucleus is excited to a low-lying state of 10-100 keV, with subsequent prompt
de-excitation. We calculate the inelastic structure factors for the odd-mass
xenon isotopes based on state-of-the-art large-scale shell-model calculations
with chiral effective field theory WIMP-nucleon currents. For these cases, we
find that the inelastic channel is comparable to or can dominate the elastic
channel for momentum transfers around 150 MeV. We calculate the inelastic
recoil spectra in the standard halo model, compare these to the elastic case,
and discuss the expected signatures in a xenon detector, along with
implications for existing and future experiments. The combined information from
elastic and inelastic scattering will allow to determine the dominant
interaction channel within one experiment. In addition, the two channels probe
different regions of the dark matter velocity distribution and can provide
insight into the dark halo structure. The allowed recoil energy domain and the
recoil energy at which the integrated inelastic rates start to dominate the
elastic channel depend on the mass of the dark matter particle, thus providing
a potential handle to constrain its mass.Comment: 9 pages, 7 figures. Matches resubmitted version to Phys. Rev. D. One
figure added; supplemental material (fits to the structure functions) added
as an Appendi
- …