2,999 research outputs found
An innovative method for the detection of contaminant viral genome in cell cultures
The use of cell cultures involves different fields of biology, from diagnosis to research. Moreover, technologies based on animal cells represent a useful tool to the development of biological products for the prophylaxis and therapy in humans and animals. Therefore, it is necessary to perform quality controls, including virological tests. Several tests performed in research laboratories are able to discriminate one or more viral species, but it is not possible to demonstrate the presence of contaminant viral genome with one non-specific method. The aim of this work consisted on the realization of a biomolecular method able to detect and to identify by sequencing extraneous viral genome in cell cultures of animal and human origin in the absence of any specific information about the virus
Bone marrow-derived cells can acquire cardiac stem cells properties in damaged heart
Experimental data suggest that cell-based therapies may be useful for cardiac regeneration following ischaemic heart disease. Bone marrow (BM) cells have been reported to contribute to tissue repair after myocardial infarction (MI) by a variety of humoural and cellular mechanisms. However, there is no direct evidence, so far, that BM cells can generate cardiac stem cells (CSCs). To investigate whether BM cells contribute to repopulate the Kit+ CSCs pool, we transplanted BM cells from transgenic mice, expressing green fluorescent protein under the control of Kit regulatory elements, into wild-type irradiated recipients. Following haematological reconstitution and MI, CSCs were cultured from cardiac explants to generate 'cardiospheres', a microtissue normally originating in vitro from CSCs. These were all green fluorescent (i.e. BM derived) and contained cells capable of initiating differentiation into cells expressing the cardiac marker Nkx2.5. These findings indicate that, at least in conditions of local acute cardiac damage, BM cells can home into the heart and give rise to cells that share properties of resident Kit+ CSCs
Parametric coupling between macroscopic quantum resonators
Time-dependent linear coupling between macroscopic quantum resonator modes
generates both a parametric amplification also known as a {}"squeezing
operation" and a beam splitter operation, analogous to quantum optical systems.
These operations, when applied properly, can robustly generate entanglement and
squeezing for the quantum resonator modes. Here, we present such coupling
schemes between a nanomechanical resonator and a superconducting electrical
resonator using applied microwave voltages as well as between two
superconducting lumped-element electrical resonators using a r.f.
SQUID-mediated tunable coupler. By calculating the logarithmic negativity of
the partially transposed density matrix, we quantitatively study the
entanglement generated at finite temperatures. We also show that
characterization of the nanomechanical resonator state after the quantum
operations can be achieved by detecting the electrical resonator only. Thus,
one of the electrical resonator modes can act as a probe to measure the
entanglement of the coupled systems and the degree of squeezing for the other
resonator mode.Comment: 15 pages, 4 figures, submitte
Experiments and numerical simulations to evaluate peeling properties of polymeric coatings for degradable Mg stents
Phosphorylation of the androgen receptor is associated with reduced survival in hormonerefractory prostate cancer patients
Cell line studies demonstrate that the PI3K/Akt pathway is upregulated in hormone-refractory prostate cancer (HRPC) and can result in phosphorylation of the androgen receptor (AR). The current study therefore aims to establish if this has relevance to the development of clinical HRPC. Immunohistochemistry was employed to investigate the expression and phosphorylation status of Akt and AR in matched hormone-sensitive and -refractory prostate cancer tumours from 68 patients. In the hormone-refractory tissue, only phosphorylated AR (pAR) was associated with shorter time to death from relapse (<i>P</i>=0.003). However, when an increase in expression in the transition from hormone-sensitive to -refractory prostate cancer was investigated, an increase in expression of PI3K was associated with decreased time to biochemical relapse (<i>P</i>=0.014), and an increase in expression of pAkt<sup>473</sup> and pAR<sup>210</sup> were associated with decreased disease-specific survival (<i>P</i>=0.0019 and 0.0015, respectively). Protein expression of pAkt<sup>473</sup> and pAR<sup>210</sup> also strongly correlated (<i>P</i><0.001, c.c.=0.711) in the hormone-refractory prostate tumours. These results provide evidence using clinical specimens, that upregulation of the PI3K/Akt pathway is associated with phosphorylation of the AR during development of HRPC, suggesting that this pathway could be a potential therapeutic target
Feeding the brain: the importance of nutrients for brain functions and health
\u2018We are what we eat\u2019, said the philosopher Feuerbach. In fact, the quality of the food we eat affects our mind as well: the brain, which represents 2% of our body weight, consumes about 20% of the calories we eat each day. Follow a few rules could therefore help to feed properly our brain, so it works to the best of its ability. It is important to know properties of foods especially regarding their aminoacidic composition because aminoacids are components of neurotransmitters, molecules needed for brain transmission and function. It is also possible to choose specific food to prevent or support different diseases that affects nervous system
Circuit QED scheme for realization of the Lipkin-Meshkov-Glick model
We propose a scheme in which the Lipkin-Meshkov-Glick model is realized
within a circuit QED system. An array of N superconducting qubits interacts
with a driven cavity mode. In the dispersive regime, the cavity mode is
adiabatically eliminated generating an effective model for the qubits alone.
The characteristic long-range order of the Lipkin-Meshkov-Glick model is here
mediated by the cavity field. For a closed qubit system, the inherent second
order phase transition of the qubits is reflected in the intensity of the
output cavity field. In the broken symmetry phase, the many-body ground state
is highly entangled. Relaxation of the qubits is analyzed within a mean-field
treatment. The second order phase transition is lost, while new bistable
regimes occur.Comment: 5 pages, 2 figure
A frequency and sensitivity tunable microresonator array for high-speed quantum processor readout
Superconducting microresonators have been successfully utilized as detection
elements for a wide variety of applications. With multiplexing factors
exceeding 1,000 detectors per transmission line, they are the most scalable
low-temperature detector technology demonstrated to date. For high-throughput
applications, fewer detectors can be coupled to a single wire but utilize a
larger per-detector bandwidth. For all existing designs, fluctuations in
fabrication tolerances result in a non-uniform shift in resonance frequency and
sensitivity, which ultimately limits the efficiency of band-width utilization.
Here we present the design, implementation, and initial characterization of a
superconducting microresonator readout integrating two tunable inductances per
detector. We demonstrate that these tuning elements provide independent control
of both the detector frequency and sensitivity, allowing us to maximize the
transmission line bandwidth utilization. Finally we discuss the integration of
these detectors in a multilayer fabrication stack for high-speed readout of the
D-Wave quantum processor, highlighting the use of control and routing circuitry
composed of single flux-quantum loops to minimize the number of control wires
at the lowest temperature stage.Comment: 8 pages, 9 figure
Targeting of multiple myeloma-related angiogenesis by miR-199a-5p mimics: in vitro and in vivo anti-tumor activity
Multiple myeloma (MM) cells induce relevant angiogenic effects within the human bone marrow milieu (huBMM) by the aberrant expression of angiogenic factors. Hypoxia triggers angiogenic events within the huBMM and the transcription factor hypoxia-inducible factor-1α (HIF-1α) is over-expressed by MM cells. Since synthetic miR-199a-5p mimics negatively regulates HIF-1α, we here investigated a miRNA-based therapeutic strategy against hypoxic MM cells. We indeed found that enforced expression of miR-199a-5p led to down-modulated expression of HIF-1α as well as of other pro-angiogenic factors such as VEGF-A, IL-8, and FGFb in hypoxic MM cells in vitro. Moreover, miR-199a-5p negatively affected MM cells migration, while it increased the adhesion of MM cells to bone marrow stromal cells (BMSCs) in hypoxic conditions. Furthermore, transfection of MM cells with miR-199a-5p significantly impaired also endothelial cells migration and down-regulated the expression of endothelial adhesion molecules such as VCAM-1 and ICAM-1. Finally, we identified a hypoxia\AKT/miR-199a-5p loop as a potential molecular mechanism responsible of miR-199a-5p down-regulation in hypoxic MM cells. Taken together our results indicate that miR-199a-5p has an important role for the pathogenesis of MM and support the hypothesis that targeting angiogenesis via a miRNA/HIF-1α pathway may represent a novel potential therapeutical approach for this still lethal diseas
- …
