122 research outputs found

    Coupled eigenmodes in a two-component Bose-Einstein condensate

    Full text link
    We have studied the elementary excitations in a two-component Bose-Einstein condensate. We concentrate on the breathing modes and find the elementary excitations to possess avoided crossings and regions of coalescing oscillations where both components of the condensates oscillate with same frequency. For large repulsive interactions between the condensates, their oscillational modes tend to decouple due to decreased overlap. A thorough investigation of the eigenmodes near the avoided crossings is presented.Comment: Replacement, 17 pages, 9 figure

    Elementary Excitations of a Bose-Einstein Condensate in an Effective Magnetic Field

    Get PDF
    We calculate the low energy elementary excitations of a Bose-Einstein Condensate in an effective magnetic field. The field is created by the interplay between light beams carrying orbital angular momentum and the trapped atoms. We examine the role of the homogeneous magnetic field, familiar from studies of rotating condensates, and also investigate spectra for vector potentials with a more general radial dependence. We discuss the instabilities which arise and how these may be manifested.Comment: 8 pages, 4 figure

    Slow light in degenerate Fermi gases

    Get PDF
    We investigate the effect of slow light propagating in a degenerate atomic Fermi gas. In particular we use slow light with an orbital angular momentum. We present a microscopic theory for the interplay between light and matter and show how the slow light can provide an effective magnetic field acting on the electrically neutral fermions, a direct analogy of the free electron gas in an uniform magnetic field. As an example we illustrate how the corresponding de Haas-van Alphen effect can be seen in a neutral gas of fermions.Comment: Slightly updated. Phys. Rev. Lett. 93, 033602 (2004

    Filled Landau levels in neutral quantum gases

    Get PDF
    We consider the signatures of the Integer Quantum Hall Effect in a degenerate gas of electrically neutral atomic fermions. An effective magnetic field is achieved by applying two incident light beams with a high orbital angular momentum. We show how states corresponding to completely filled Landau levels are obtained and discuss various possibilities to measure the incompressible nature of the trapped two-dimensional gasComment: Minor corrections. Phys. Rev. A, 053632 (2005). High resolution figures can be obtained from the author

    Polarisation rotation of slow light with orbital angular momentum in ultracold atomic gases

    Get PDF
    We consider the propagation of slow light with an orbital angular momentum (OAM) in a moving atomic medium. We have derived a general equation of motion and applied it in analysing propagation of slow light with an OAM in a rotating medium, such as a vortex lattice. We have shown that the OAM of slow light manifests itself in a rotation of the polarisation plane of linearly polarised light. To extract a pure rotational phase shift, we suggest to measure a difference in the angle of the polarisation plane rotation by two consecutive light beams with opposite OAM. The differential angle Δα\Delta\alpha_{\ell} is proportional to the rotation frequency of the medium ωrot\omega_{\mathrm{rot}} and the winding number \ell of light, and is inversely proportional to the group velocity of light. For slow light the angle Δα\Delta\alpha_{\ell} should be large enough to be detectable. The effect can be used as a tool for measuring the rotation frequency ωrot\omega_{\mathrm{rot}} of the medium.Comment: 5 pages, 1 figur

    Landau levels of cold atoms in non-Abelian gauge fields

    Get PDF
    The Landau levels of cold atomic gases in non-Abelian gauge fields are analyzed. In particular we identify effects on the energy spectrum and density distribution which are purely due to the non-Abelian character of the fields. We investigate in detail non-Abelian generalizations of both the Landau and the symmetric gauge. Finally, we discuss how these non-Abelian Landau and symmetric gauges may be generated by means of realistically feasible lasers in a tripod scheme.Comment: 13 pages, 9 figure

    Effective magnetic fields in degenerate atomic gases induced by light beams with orbital angular momenta

    Get PDF
    We investigate the influence of two resonant laser beams on the mechanical properties of degenerate atomic gases. The control and probe beams of light are considered to have Orbital Angular Momenta (OAM) and act on the three-level atoms in the Electromagnetically Induced Transparency (EIT) configuration. The theory is based on the explicit analysis of the quantum dynamics of cold atoms coupled with two laser beams. Using the adiabatic approximation, we obtain an effective equation of motion for the atoms driven to the dark state. The equation contains a vector potential type interaction as well as an effective trapping potential. The effective magnetic field is shown to be oriented along the propagation direction of the control and probe beams containing OAM. Its spatial profile can be controlled by choosing proper laser beams. We demonstrate how to generate a constant effective magnetic field, as well as a field exhibiting a radial distance dependence. The resulting effective magnetic field can be concentrated within a region where the effective trapping potential holds the atoms. The estimated magnetic length can be considerably smaller than the size of the atomic cloud.Comment: 11 pages, 5 figures Corrected some mistakes in equation

    Measuring topology in a laser-coupled honeycomb lattice: From Chern insulators to topological semi-metals

    Get PDF
    Ultracold fermions trapped in a honeycomb optical lattice constitute a versatile setup to experimentally realize the Haldane model [Phys. Rev. Lett. 61, 2015 (1988)]. In this system, a non-uniform synthetic magnetic flux can be engineered through laser-induced methods, explicitly breaking time-reversal symmetry. This potentially opens a bulk gap in the energy spectrum, which is associated with a non-trivial topological order, i.e., a non-zero Chern number. In this work, we consider the possibility of producing and identifying such a robust Chern insulator in the laser-coupled honeycomb lattice. We explore a large parameter space spanned by experimentally controllable parameters and obtain a variety of phase diagrams, clearly identifying the accessible topologically non-trivial regimes. We discuss the signatures of Chern insulators in cold-atom systems, considering available detection methods. We also highlight the existence of topological semi-metals in this system, which are gapless phases characterized by non-zero winding numbers, not present in Haldane's original model.Comment: 30 pages, 12 figures, 4 Appendice

    (3+1) Massive Dirac Fermions with Ultracold Atoms in Optical Lattices

    Full text link
    We propose the experimental realization of (3+1) relativistic Dirac fermions using ultracold atoms in a rotating optical lattice or, alternatively, in a synthetic magnetic field. This approach has the advantage to give mass to the Dirac fermions by coupling the ultracold atoms to a Bragg pulse. A dimensional crossover from (3+1) to (2+1) Dirac fermions can be obtained by varying the anisotropy of the lattice. We also discuss under which conditions the interatomic potentials give rise to relativistically invariant interactions among the Dirac fermions

    Binary Bose-Einstein Condensate Mixtures in Weakly and Strongly Segregated Phases

    Full text link
    We perform a mean-field study of the binary Bose-Einstein condensate mixtures as a function of the mutual repulsive interaction strength. In the phase segregated regime, we find that there are two distinct phases: the weakly segregated phase characterized by a `penetration depth' and the strongly segregated phase characterized by a healing length. In the weakly segregated phase the symmetry of the shape of each condensate will not take that of the trap because of the finite surface tension, but its total density profile still does. In the strongly segregated phase even the total density profile takes a different symmetry from that of the trap because of the mutual exclusion of the condensates. The lower critical condensate-atom number to observe the complete phase segregation is discussed. A comparison to recent experimental data suggests that the weakly segregated phase has been observed.Comment: minor change
    corecore