7 research outputs found

    The donor side of Photosystem II as the copper-inhibitory binding site

    Get PDF
    We have measured, under Cu (II) toxicity conditions, the oxygen-evolving capacity of spinach PS II particles in the Hill reactions H2O -> SiMo (in the presence and absence of DCMU) and H2O -> PPBQ, as well as the fluorescence induction curve of Tris-washed spinach PS II particles. Cu (II) inhibits both Hill reactions and, in the first case, the DCMU-insensitive H2O -> SiMo activity. In addition, the variable fluorescence is lowered by Cu (II). We have interpreted our results in terms of a donor side inhibition close to the reaction center. The same polarographic and fluorescence measurements carried out at different pHs indicate that Cu (II) could bind to amino acid residues that can be protonated and deprotonated. In order to reverse the Cu (II) inhibition by a posterior EDTA treatment, in experiments of preincubation of PS II particles with Cu (II) in light we have demonstrated that light is essential for the damage due to Cu (II) and that this furthermore is irreversible.This work was supported by a grant from the Spanish DGICYT (PB94-0116). J.B. Arellano was the recipient of a fellowship from the Spanish Science and Education Ministry.Peer reviewe

    The donor side of Photosystem II as the copper-inhibitory binding site

    Get PDF
    We have measured, under Cu (II) toxicity conditions, the oxygen-evolving capacity of spinach PS II particles in the Hill reactions H2O -> SiMo (in the presence and absence of DCMU) and H2O -> PPBQ, as well as the fluorescence induction curve of Tris-washed spinach PS II particles. Cu (II) inhibits both Hill reactions and, in the first case, the DCMU-insensitive H2O -> SiMo activity. In addition, the variable fluorescence is lowered by Cu (II). We have interpreted our results in terms of a donor side inhibition close to the reaction center. The same polarographic and fluorescence measurements carried out at different pHs indicate that Cu (II) could bind to amino acid residues that can be protonated and deprotonated. In order to reverse the Cu (II) inhibition by a posterior EDTA treatment, in experiments of preincubation of PS II particles with Cu (II) in light we have demonstrated that light is essential for the damage due to Cu (II) and that this furthermore is irreversible.This work was supported by a grant from the Spanish DGICYT (PB94-0116). J.B. Arellano was the recipient of a fellowship from the Spanish Science and Education Ministry.Peer reviewe
    corecore