3 research outputs found

    First application of hemi-body electron beam irradiation for Kaposi sarcoma at the lower extremities

    Get PDF
    Kaposi’s sarcoma (KS) is a systemic neoplastic disease that can present cutaneous symptoms and is usually treated with a systematic approach due to its extent. Due to its radiosensitivity, radiotherapy is considered one of its main treatments, for palliation and local control of the skin and mucosal lesions. The aim of this paper was to report the first case of KS treated by hemi-body electron irradiation protocol in Greece. A fractionated 40 Gy hemi-body electron irradiation was prescribed to a 60-year-old male patient with KS at his legs. Dose uniformity was verified on a daily basis by thermo luminescence dosimetry (TLD). The treatment resulted to complete clinical response. Limited irradiation-derived side effects appeared. This is the first case ever to be treated with hemi-body electron irradiation protocol in Greece. To the best of our knowledge, this is also the first time that a single field hemi-body electron beam irradiation at a total skin electron beam (TSEB)-like configuration is reported to be used for KS

    Clinical application of Total Skin Electron Beam (TSEB) therapy for the management of T cell cutaneous lymphomas. The evolving role of low dose (12 Gy) treatment schedule

    No full text
    Background & purpose: Although rare, cutaneous lymphomas represent a separate entity in hematologic oncology. T cell origin lymphomas are most common, with Mycosis Fungoides (MF) accounting for about 50–70% of cases. Sezary Syndrome (SS), which represents the leukemic varian of MF, accounts for 3% of Cutaneous T Cell Lymphomas (CTCL). Total Skin Electron Beam Therapy (TSEB) is included at the mainstream of treatment choices for CTCL. The scope of this study is to evaluate the effectiveness and toxicity of two treatment schedules of TSEB. Methods and materials: We report our experience with TSEB in the management of MF and SS, as of 14 patients treated in our institution from 2011 to 2015. 8 patients received the 12 Gy (low dose) scheme while 6 patients were managed with 36 Gy (standard or full dose scheme) according to six dual field Stanford technique. The endpoints were overall response rate, duration of response and toxicity of treatment. Results: After a median follow up of 2.5 years we noted excellent treatment outcome, with both schemes being well tolerated and resulting in comparable response rates. The overall response rate for both treatment regimens was over 87.5%. Treatment was well tolerated with mild toxicity. Conclusion: The role of TSEB in the management of MF and SS is well established. The low dose TSEB schedule of 12 Gy is an effective treatment option, since therapeutic results are more than acceptable, compliance is excellent and toxicity is minimal. Moreover, the evidence that it can be repeated safely makes it more attractive than the standard 36 Gy scheme, when a patient is referred to radiation treatment according to treatment guidelines
    corecore