10 research outputs found

    Three-Dimensional Expanded Graphene–Metal Oxide Film via Solid-State Microwave Irradiation for Aqueous Asymmetric Supercapacitors

    No full text
    Carbon-based electrochemical double-layer capacitors and pseudocapacitors, consisting of a symmetric configuration of electrodes, can deliver much higher power densities than batteries, but they suffer from low energy densities. Herein, we report the development of high energy and power density supercapacitors using an asymmetric configuration of Fe<sub>2</sub>O<sub>3</sub> and MnO<sub>2</sub> nanoparticles incorporated into 3D macroporous graphene film electrodes that can be operated in a safe and low-cost aqueous electrolyte. The gap in working potential windows of Fe<sub>2</sub>O<sub>3</sub> and MnO<sub>2</sub> enables the stable expansion of the cell voltage up to 1.8 V, which is responsible for the high energy density (41.7 Wh kg<sup>–1</sup>). We employ a household microwave oven to simultaneously create conductivity, porosity, and the deposition of metal oxides on graphene films toward 3D hybrid architectures, which lead to a high power density (13.5 kW kg<sup>–1</sup>). Such high energy and power densities are maintained for over 5000 cycles, even during cycling at a high current density of 16.9 A g<sup>–1</sup>

    Dopamine-Assisted Synthesis of Carbon-Coated Silica for PCR Enhancement

    No full text
    Polymerase chain reaction (PCR) has become one of the most popular methods to identify genomic information on cells and tissues as well as to solve crimes and check genetic diseases. Recently, the nanomaterials including nanocomposite and nanoparticles have been considered as a next generation of solution to improve both quality and productivity of PCR. Herein, taking into these demands, carbon-coated silica was synthesized using silica particles via polymerization of biocompatible dopamine (PD) to form polydopamine (PDA) film and carbonization of PDA into graphitic structures. For further investigation of the effects of as-prepared silica, PDA-coated silica (PDA silica), and carbonized PDA silica (C-PDA silica), two different types of genes were adopted to investigate the influences of them in the PCR. Furthermore, the strong interaction between the nanocomposites and PCR reagents including polymerase and primers enables regulation of the PCR performance. The effectiveness of the nanocomposites was also confirmed through adopting the conventional PCR and real-time PCR with two different types of DNA as realistic models and different kinds of analytical methods. These findings could provide helpful insight for the potential application in biosensors and biomedical diagnosis

    <i>In Vitro</i> Biosynthesis of Metal Nanoparticles in Microdroplets

    No full text
    We report the use of a hydrogel polymer, recombinant <i>Escherichia coli</i> cell extracts, and a microdroplet-based microfluidic device to fabricate artificial cellular bioreactors which act as reactors to synthesize diverse metal nanoparticles (NPs). The combination of cell extracts, microdroplet-based microfluidic device, and hydrogel was able to produce a mass amount of artificial cellular bioreactors with uniform size and shape. For the first time, we report the alternating generation of microdroplets through one orifice for the fabrication of the artificial cellular reactors using the cell extract as inner cellular components and hydrogel as an artificial cellular membrane. Notably, the hydrogels were able to protect the encapsulated cell extracts from the surrounding environment and maintain the functionality of cellular component for the further cellular bioreactor applications. Furthermore, the successful applications of the fabricated artificial cellular bioreactors to synthesize various NPs including quantum dots, iron, and gold was demonstrated. By employing this microfluidic technique, the artificial cellular bioreactors could be applicable for the synthesis of diverse metal NPs through simple dipping of the reactors to the metal precursor solutions. Thus, the different size of NPs can be synthesized through controlling the concentration of metal precursors. This artificial cellular bioreactors offer promising abilities to biofriendly ways to synthesis diverse NPs and can be applicable in chemical, biomedical, and bioengineering applications

    <i>In Vitro</i> Biosynthesis of Metal Nanoparticles in Microdroplets

    No full text
    We report the use of a hydrogel polymer, recombinant <i>Escherichia coli</i> cell extracts, and a microdroplet-based microfluidic device to fabricate artificial cellular bioreactors which act as reactors to synthesize diverse metal nanoparticles (NPs). The combination of cell extracts, microdroplet-based microfluidic device, and hydrogel was able to produce a mass amount of artificial cellular bioreactors with uniform size and shape. For the first time, we report the alternating generation of microdroplets through one orifice for the fabrication of the artificial cellular reactors using the cell extract as inner cellular components and hydrogel as an artificial cellular membrane. Notably, the hydrogels were able to protect the encapsulated cell extracts from the surrounding environment and maintain the functionality of cellular component for the further cellular bioreactor applications. Furthermore, the successful applications of the fabricated artificial cellular bioreactors to synthesize various NPs including quantum dots, iron, and gold was demonstrated. By employing this microfluidic technique, the artificial cellular bioreactors could be applicable for the synthesis of diverse metal NPs through simple dipping of the reactors to the metal precursor solutions. Thus, the different size of NPs can be synthesized through controlling the concentration of metal precursors. This artificial cellular bioreactors offer promising abilities to biofriendly ways to synthesis diverse NPs and can be applicable in chemical, biomedical, and bioengineering applications

    Multifunctional Polyurethane Sponge for Polymerase Chain Reaction Enhancement

    No full text
    Selective filtering of target biomaterials from impurities is an important task in DNA amplification through polymerase chain reaction (PCR) enhancement and gene identification to save endangered animals and marine species. Conventional gene extraction methods require complicated steps, skilled persons, and expensive chemicals and instruments to improve DNA amplification. Herein, we proposed an alternative method for overcoming such challenges by imparting secondary functionality using commercially available polyurethane (PU) sponges and cost-effective fabrication approaches through polydopamine and polysiloxane coatings. The porous, highly flexible, and chemically modified superhydrophilic and superhydrophobic PU sponges allow large surface areas and mechanically stable frames for effective extraction of genomic DNA through selective filtering of fish tissues and oils. Furthermore, these chemically modified PU sponges allow separation of genes and improvement of PCR for DNA amplification for the identification of fish species. The combination of a simple fabrication method and functionalized PU sponges could be a useful platform for PCR enhancement and gene-based identification of species for practical applications

    Enhanced Pseudocapacitance of Ionic Liquid/Cobalt Hydroxide Nanohybrids

    No full text
    Development of nanostructured materials with enhanced redox reaction capabilities is important for achieving high energy and power densities in energy storage systems. Here, we demonstrate that the nanohybridization of ionic liquids (ILs, 1-butyl-3-methylimidazolium tetrafluoroborate) and cobalt hydroxide (Co(OH)<sub>2</sub>) through ionothermal synthesis leads to a rapid and reversible redox reaction. The as-synthesized IL-Co(OH)<sub>2</sub> has a favorable, tailored morphology with a large surface area of 400.4 m<sup>2</sup>/g and a mesopore size of 4.8 nm. In particular, the IL-Co(OH)<sub>2</sub>-based electrode exhibits improvement in electrochemical characteristics compared with bare Co(OH)<sub>2</sub>, showing a high specific capacitance of 859 F/g at 1 A/g, high-rate capability (∼95% retention at 30 A/g), and excellent cycling performance (∼96% retention over 1000 cycles). AC impedance analysis demonstrates that the introduction of ILs on Co(OH)<sub>2</sub> facilitates ion transport and charge transfer: IL-Co(OH)<sub>2</sub> shows a higher ion diffusion coefficient (1.06 × 10<sup>–11</sup> cm<sup>2</sup>/s) and lower charge transfer resistance (1.53 Ω) than those of bare Co(OH)<sub>2</sub> (2.55 × 10<sup>–12</sup> cm<sup>2</sup>/s and 2.59 Ω). Our density functional theory (DFT) calculations reveal that the IL molecules, consisting of anion and cation groups, enable easier hydrogen desorption/adsorption process, that is, a more favorable redox reaction on the Co(OH)<sub>2</sub> surface

    Plastic-Chip-Based Magnetophoretic Immunoassay for Point-of-Care Diagnosis of Tuberculosis

    No full text
    Tuberculosis (TB) remains a relevant infectious disease in the 21st century, and its extermination is still far from being attained. Due to the extreme infectivity of incipient TB patients, a rapid sensing system for proficient point-of-care (POC) diagnostics is required. In our study, a plastic-chip-based magnetophoretic immunoassay (pcMPI) is introduced using magnetic and gold nanoparticles (NPs) modified with <i>Mycobacterium tuberculosis</i> (MTB) antibodies. This pcMPI offers an ultrasensitive limit of detection (LOD) of 1.8 pg·ml<sup>–1</sup> for the detection of CFP-10, an MTB-secreted antigen, as a potential TB biomarker with high specificity. In addition, by combining the plastic chip with an automated spectrophotometer setup, advantages include ease of operation, rapid time to results (1 h), and cost-effectiveness. Furthermore, the pcMPI results using clinical sputum culture filtrate samples are competitively compared with and integrated with clinical data collected from conventional tools such as the acid-fast bacilli (AFB) test, mycobacteria growth indicator tube (MGIT), polymerase chain reaction (PCR), and physiological results. CFP-10 concentrations were consistently higher in patients diagnosed with MTB infection than those seen in patients infected with nontuberculosis mycobacteria (NTM) (<i>P</i> < 0.05), and this novel test can distinguish MTB and NTM while MGIT cannot. All these results indicate that this pcMPI has the potential to become a new commercial TB diagnostic POC platform in view of its sensitivity, portability, and affordability

    Plastic-Chip-Based Magnetophoretic Immunoassay for Point-of-Care Diagnosis of Tuberculosis

    No full text
    Tuberculosis (TB) remains a relevant infectious disease in the 21st century, and its extermination is still far from being attained. Due to the extreme infectivity of incipient TB patients, a rapid sensing system for proficient point-of-care (POC) diagnostics is required. In our study, a plastic-chip-based magnetophoretic immunoassay (pcMPI) is introduced using magnetic and gold nanoparticles (NPs) modified with <i>Mycobacterium tuberculosis</i> (MTB) antibodies. This pcMPI offers an ultrasensitive limit of detection (LOD) of 1.8 pg·ml<sup>–1</sup> for the detection of CFP-10, an MTB-secreted antigen, as a potential TB biomarker with high specificity. In addition, by combining the plastic chip with an automated spectrophotometer setup, advantages include ease of operation, rapid time to results (1 h), and cost-effectiveness. Furthermore, the pcMPI results using clinical sputum culture filtrate samples are competitively compared with and integrated with clinical data collected from conventional tools such as the acid-fast bacilli (AFB) test, mycobacteria growth indicator tube (MGIT), polymerase chain reaction (PCR), and physiological results. CFP-10 concentrations were consistently higher in patients diagnosed with MTB infection than those seen in patients infected with nontuberculosis mycobacteria (NTM) (<i>P</i> < 0.05), and this novel test can distinguish MTB and NTM while MGIT cannot. All these results indicate that this pcMPI has the potential to become a new commercial TB diagnostic POC platform in view of its sensitivity, portability, and affordability

    Fabrication of Flexible, Redoxable, and Conductive Nanopillar Arrays with Enhanced Electrochemical Performance

    No full text
    Highly ordered and flexible nanopillar arrays have received considerable interest for many applications of electrochemical devices because of their unique mechanical and structural properties. Here, we report on highly ordered polyoxometalate (POM)-doped polypyrrole (Ppy) nanopillar arrays produced by soft lithography and subsequent electrodeposition. As-prepared POM-Ppy/nanopillar films show superior electrochemical performances for pseudocapacitor and enzymeless electrochemical sensor applications and good mechanical properties, which allowed them to be easily bent and twisted. Regarding electrochemical characteristics for pseudocapacitive electrodes, the POM-Ppy/nanopillar electrodes are capable of delivering high areal capacitance of 77.0 mF cm<sup>–2</sup>, high rate performance, and good cycle life of ∼100% retention over 3500 cycles even when bent. Moreover, the study suggests that the POM-Ppy/nanopillar electrodes have an excellent electrocatalytic activity toward hydrogen

    Flexible and Disposable Sensing Platforms Based on Newspaper

    No full text
    The flexible sensing platform is a key component for the development of smart portable devices targeting healthcare, environmental monitoring, point-of-care diagnostics, and personal electronics. Herein, we demonstrate a simple, scalable, and cost-effective strategy for fabrication of a sensing electrode based on a waste newspaper with conformal coating of parylene C (P-paper). Thin polymeric layers over cellulose fibers allow the P-paper to possess improved mechanical and chemical stability, which results in high-performance flexible sensing platforms for the detection of pathogenic <i>E. coli</i> O157:H7 based on DNA hybridization. Moreover, P-paper electrodes have the potential to serve as disposable, flexible sensing platforms for point-of-care testing biosensors
    corecore