3,079 research outputs found

    Solar neutrino interactions: Using charged currents at SNO to tell neutral currents at Super-Kamiokande

    Get PDF
    In the presence of flavor oscillations, muon and tau neutrinos can contribute to the Super-Kamiokande (SK) solar neutrino signal through the neutral current process \nu_{\mu,\tau} e^{-}\to \nu_{\mu,\tau} e^{-}. We show how to separate the \nu_e and \nu_{\mu,\tau} event rates in SK in a model independent way, by using the rate of the charged current process \nu_e d \to p p e^{-} from the Sudbury Neutrino Observatory (SNO) experiment, with an appropriate choice of the SK and SNO energy thresholds. Under the additional hypothesis of no oscillations into sterile states, we also show how to determine the absolute ^{8}B neutrino flux from the same data set, independently of the \nu_e survival probability.Comment: 14 pages (RevTeX), incl. 3 figures (epsf), submitted to Phys. ReV.

    Higher rank numerical ranges of normal matrices

    Get PDF
    The higher rank numerical range is closely connected to the construction of quantum error correction code for a noisy quantum channel. It is known that if a normal matrix A∈MnA \in M_n has eigenvalues a1,.˙.,ana_1, \..., a_n, then its higher rank numerical range Λk(A)\Lambda_k(A) is the intersection of convex polygons with vertices aj1,.˙.,ajn−k+1a_{j_1}, \..., a_{j_{n-k+1}}, where 1≀j1<.˙.<jn−k+1≀n1 \le j_1 < \... < j_{n-k+1} \le n. In this paper, it is shown that the higher rank numerical range of a normal matrix with mm distinct eigenvalues can be written as the intersection of no more than max⁥{m,4}\max\{m,4\} closed half planes. In addition, given a convex polygon P{\mathcal P} a construction is given for a normal matrix A∈MnA \in M_n with minimum nn such that Λk(A)=P\Lambda_k(A) = {\mathcal P}. In particular, if P{\mathcal P} has pp vertices, with p≄3p \ge 3, there is a normal matrix A∈MnA \in M_n with n≀max⁥{p+k−1,2k+2}n \le \max\left\{p+k-1, 2k+2 \right\} such that Λk(A)=P\Lambda_k(A) = {\mathcal P}.Comment: 12 pages, 9 figures, to appear in SIAM Journal on Matrix Analysis and Application

    Comparing the sensitivity of ionization chamber array to film and point dose measurement for IMRT delivery errors

    Get PDF
    Abstract no. 10625Therapy General Poster Discussion: SU‐FF‐T‐226PURPOSE: To compare the sensitivity of 2D ion chamber array, film dosimetry and point dose measurement for detecting IMRT delivery errors. METHOD AND MATERIALS: 2 types of IMRT delivery errors were considered. First type involved adding 1 mm systematic error to 1 bank of the MLC leaves, resulting in a dose discrepancy of ≄ 5%. The second type involved ‘undeliverable intensity patterns’, resulting from improper use of smoothness constraint during optimization. 4 and 2 plans were studied for type 1 and 
postprin

    The Bouncing Jet: A Newtonian Liquid Rebounding off a Free Surface

    Get PDF
    We find that a liquid jet can bounce off a bath of the same liquid if the bath is moving horizontally with respect to the jet. Previous observations of jets rebounding off a bath (e.g. Kaye effect) have been reported only for non-Newtonian fluids, while we observe bouncing jets in a variety of Newtonian fluids, including mineral oil poured by hand. A thin layer of air separates the bouncing jet from the bath, and the relative motion replenishes the film of air. Jets with one or two bounces are stable for a range of viscosity, jet flow rate and velocity, and bath velocity. The bouncing phenomenon exhibits hysteresis and multiple steady states.Comment: 9 pages, 7 figures. submitted to Physical Review

    Fine structure splittings of excited P and D states in charmonium

    Get PDF
    It is shown that the fine structure splittings of the 23PJ2 ^3P_J and 33PJ3 ^3P_J excited states in charmonium are as large as those of the 13PJ1^3P_J state if the same αs(ÎŒ)≈0.36\alpha_s(\mu)\approx 0.36 is used. The predicted mass M(23P0)=3.84M(2 ^3P_0)=3.84 GeV appears to be 120 MeV lower that the center of gravity of the 23PJ2 ^3P_J multiplet and lies below the DDˉ∗D\bar D^* threshold. Our value of M(23P0)M(2 ^3P_0) is approximately 80 MeV lower than that from the paper by Godfrey and Isgur while the differences in the other masses are \la 20 MeV. Relativistic kinematics plays an important role in our analysis.Comment: 12 page

    Experimental demonstration of phase-remapping attack in a practical quantum key distribution system

    Full text link
    Unconditional security proofs of various quantum key distribution (QKD) protocols are built on idealized assumptions. One key assumption is: the sender (Alice) can prepare the required quantum states without errors. However, such an assumption may be violated in a practical QKD system. In this paper, we experimentally demonstrate a technically feasible "intercept-and-resend" attack that exploits such a security loophole in a commercial "plug & play" QKD system. The resulting quantum bit error rate is 19.7%, which is below the proven secure bound of 20.0% for the BB84 protocol. The attack we utilize is the phase-remapping attack (C.-H. F. Fung, et al., Phys. Rev. A, 75, 32314, 2007) proposed by our group.Comment: 16 pages, 6 figure

    A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution

    Full text link
    We discuss excess noise contributions of a practical balanced homodyne detector in Gaussian-modulated coherent-state (GMCS) quantum key distribution (QKD). We point out the key generated from the original realistic model of GMCS QKD may not be secure. In our refined realistic model, we take into account excess noise due to the finite bandwidth of the homodyne detector and the fluctuation of the local oscillator. A high speed balanced homodyne detector suitable for GMCS QKD in the telecommunication wavelength region is built and experimentally tested. The 3dB bandwidth of the balanced homodyne detector is found to be 104MHz and its electronic noise level is 13dB below the shot noise at a local oscillator level of 8.5*10^8 photon per pulse. The secure key rate of a GMCS QKD experiment with this homodyne detector is expected to reach Mbits/s over a few kilometers.Comment: 22 pages, 11 figure

    Low frequency noise statistics for the breakdown characterization of ultra-thin gate oxides

    Get PDF
    We have investigated the statistics of low frequency noise in the tunneling current of ultrathin oxides (2.5nm-4nm) in metal oxide semiconductor capacitors as a function of the applied voltage stress. The statistical analysis includes (i) non-Gaussianity (nG), which is a measure of the degree of temporal correlation in the noise, and (ii) ratio of integrated noise power to the DC leakage current (R). The occurrence of high peaks in nG indicates the appearance of new percolation paths, and the subsequent conduction through these paths is indicated by R. Our results show that the nG and R characteristics are generic for the oxides of different thickness and growth quality and have the potential, in conjunction with leakage itself, of being used as a prognosticator of oxide reliability.Comment: 4 page

    Selection of the ground state for nonlinear Schroedinger equations

    Full text link
    We prove for a class of nonlinear Schr\"odinger systems (NLS) having two nonlinear bound states that the (generic) large time behavior is characterized by decay of the excited state, asymptotic approach to the nonlinear ground state and dispersive radiation. Our analysis elucidates the mechanism through which initial conditions which are very near the excited state branch evolve into a (nonlinear) ground state, a phenomenon known as {\it ground state selection}. Key steps in the analysis are the introduction of a particular linearization and the derivation of a normal form which reflects the dynamics on all time scales and yields, in particular, nonlinear Master equations. Then, a novel multiple time scale dynamic stability theory is developed. Consequently, we give a detailed description of the asymptotic behavior of the two bound state NLS for all small initial data. The methods are general and can be extended to treat NLS with more than two bound states and more general nonlinearities including those of Hartree-Fock type.Comment: Revision of 2001 preprint; 108 pages Te
    • 

    corecore