2,249 research outputs found
TRA-936: MODIFYING SIGNAL CONTROL AT INTERSECTIONS UNDER ADVERSE WEATHER CONDITONS
Adverse winter weather has always been a cause of traffic congestion and road collisions. To mitigate the negative impacts of winter weather, transportation agencies are under increasing pressure to introduce weather responsive traffic management strategies such as adaptive control of signalized intersections and variable speed limits. Currently, most traffic signal control systems are designed for normal weather conditions and are therefore suboptimal in terms of efficiency and safety for controlling traffic during winter snow events due to the changing traffic patterns and driver behavior. The main objective of this research is to explore how to modify traffic signal control under adverse weather conditions. This research consists of two main components. First, we have examined the impacts of winter weather on two key traffic parameters, i.e., saturation flow rate and start-up lost time. Both parameters were measured from 16 hours of traffic video footage at one intersection. Secondly, we have investigated the potential benefits of implementing weather-specific signal control plans for isolated intersections as well as arterial corridors based on two case studies. Three traffic demand scenarios, i.e., high, medium, and low, were considered. We developed weather-specific signal plan alternatives for each scenario based on the traffic parameters measured in winter weather. Evaluation results show that implementing such signal plans is most beneficial for intersection with a medium level of traffic demand. It is also been found that the benefit of implementing weather-responsive plans was more compelling an arterial-corridor level with signal coordination than at an isolated-intersection level
A Hybrid Geostatistical Method for Estimating Citywide Traffic Volumes β A Case Study of Edmonton, Canada
Traffic volume information has long played an important role in many transportation related works, such as traffic operations, roadway design, air quality control, and policy making. However, monitoring traffic volumes over a large spatial area is not an easy task due to the significant amount of time and manpower required to collect such large-scale datasets. In this study, a hybrid geostatistical approach, named Network Regression Kriging,has been developed to estimate urban traffic volumes by incorporating auxiliary variables such as road type, speed limit, and network accessibility.Since standard kriging is based on Euclidean distances, this study implements road network distances to improve traffic volumes estimations.A case study using 10-year of traffic volume data collected within the city of Edmonton was conducted to demonstrate the robustness of the model developed herein. Results suggest that the proposed hybrid model significantly outperforms the standard kriging method in terms of accuracy by 4.0% overall, especially for a large-scale network. It was also found that the necessary stationarity assumption for kriging did not hold true for a large network whereby separate estimations for each road type performed significantly better than a general estimation for the overall network by 4.12%
TRA-901: OPTIMIZING THE LOCATION OF ROAD WEATHER INFORMATION SYSTEMS (RWIS) STATIONS β A SAMPLING DESIGN OPTIMIZATION APPROACH
This study presents an innovative approach to the design of a road weather information monitoring system (RWIS) that optimally combines spatial data on weather-related road surface conditions with data on traffic volume over a state-wide road network. The optimization method minimizes the spatially averaged ordinary kriging variance of hazardous road surface condition (HRSC) frequencies. Since it is desired that an RWIS should also be located at high traffic demand areas, road class data is implemented in the optimization process. Spatial simulated annealing (SSA) is used to search for the optimal RWIS network design by iteratively examining each possible location and accepting designs that ameliorate a weighted sum of average kriging variance and road class detection capability. This novel approach is applied in the optimization of Minnesota RWIS network to illustrate the distinct features of the proposed method, assess the effectiveness of the current location setting, and recommend new additional stations locations. The findings of the study suggest that the method introduced in this study is useful for determining the optimal RWIS station locations and placing a few in addition to the existing stations by incorporating key elements being considered in practice
Scarred Resonances and Steady Probability Distribution in a Chaotic Microcavity
We investigate scarred resonances of a stadium-shaped chaotic microcavity. It
is shown that two components with different chirality of the scarring pattern
are slightly rotated in opposite ways from the underlying unstable periodic
orbit, when the incident angles of the scarring pattern are close to the
critical angle for total internal reflection. In addition, the correspondence
of emission pattern with the scarring pattern disappears when the incident
angles are much larger than the critical angle. The steady probability
distribution gives a consistent explanation about these interesting phenomena
and makes it possible to expect the emission pattern in the latter case.Comment: 4 pages, 5 figure
Dye regeneration and charge recombination in dye-sensitized solar cells with ferrocene derivatives as redox mediators
Ferrocene compounds are promising redox shuttles for application in dye-sensitized solar cells (DSCs). Chemical modification of the cyclopentadienyl rings is easily achievable affording almost unlimited variation of the redox properties. This allows fine-tuning of the driving force for dye-regeneration and optimization of the energy conversion efficiency of DSCs. Herein, six ferrocene derivatives have been chosen for investigation which cover the large redox potential range of 0.85 V, by virtue of simple alkylation and halogenation of the cyclopentadienyl ring, and enable improved matching of the energy levels of the sensitizer and the electrolyte. Although the focus of this work was to examine the effect of the redox potential on charge transfer processes, DSCs were fabricated which achieved high energy conversion efficiencies of over 5%. Charge transfer reactions were studied to reveal the dependence of the dye regeneration rate, recombination losses and recombination pathways on the reaction driving force. An increase in redox potential led to a higher efficiency due to higher open circuit potentials until a threshold is reached. At this threshold, the driving force for dye regeneration (18 kJ DE ΒΌ 0.19 V) becomes too small for efficient device operation, leading to rapid recombination between the oxidized dye and electrons in the TiO2 conduction band. As a result of this work guidelines can be formulated to aid the selection of redox couples for a particular sensitizer in order to maximize the utilization of incident solar energy
Induction chemotherapy in head and neck squamous cell carcinoma of the paranasal sinus and nasal cavity: A role in organ preservation
Background/Aims: The role of induction chemotherapy (IC) for eyeball preservation has not been established in head and neck squamous cell carcinoma (HNSCC) of the paranasal sinus and nasal cavity (PNSNC). Periorbital involvement frequently leads to eyeball exenteration with a margin of safety. We evaluated the treatment outcomes, including survival and eyeball preservation, of patients who received IC for HNSCC of the PNSNC. Methods: We reviewed 21 patients diagnosed with HNSCC of the PNSNC who were treated with IC. We analyzed response, eyeball preservation rate, and overall survival. Results: Tumors were located in the paranasal sinus (n = 14) or nasal cavity (n = 7). Most patients had stage T4a (n = 10) or T4b (n = 7) disease. More than half of the patients received a chemotherapy regimen of docetaxel, fluorouracil, and cisplatin (n = 11). Thirteen patients (61.9%) achieved a partial response after IC and 15 patients (71.4%) achieved T down-staging. Among 17 patients with stage T4 disease, which confers a high risk of orbital exenteration, 14 (82.4%) achieved preservation of the involved eye. The 3-year overall survival (OS) rate of patients who achieved a partial response to IC was 84.6%. The 3-year OS rate of patients with stable disease or disease progression after IC was 25.0% (p = 0.038). Conclusions: IC could be considered for down-staging patients with advanced T-stage disease. It could also be a reasonable option for eyeball preservation in locally advanced HNSCC of the PNSNC.
STK295900, a Dual Inhibitor of Topoisomerase 1 and 2, Induces G<inf>2</inf> Arrest in the Absence of DNA Damage
STK295900, a small synthetic molecule belonging to a class of symmetric bibenzimidazoles, exhibits antiproliferative activity against various human cancer cell lines from different origins. Examining the effect of STK295900 in HeLa cells indicates that it induces G2 phase arrest without invoking DNA damage. Further analysis shows that STK295900 inhibits DNA relaxation that is mediated by topoisomerase 1 (Top 1) and topoisomerase 2 (Top 2) in vitro. In addition, STK295900 also exhibits protective effect against DNA damage induced by camptothecin. However, STK295900 does not affect etoposide-induced DNA damage. Moreover, STK295900 preferentially exerts cytotoxic effect on cancer cell lines while camptothecin, etoposide, and Hoechst 33342 affected both cancer and normal cells. Therefore, STK295900 has a potential to be developed as an anticancer chemotherapeutic agent. Β© 2013 Kim et al
UBR2 of the N-End Rule Pathway Is Required for Chromosome Stability via Histone Ubiquitylation in Spermatocytes and Somatic Cells
The N-end rule pathway is a proteolytic system in which its recognition components (N-recognins) recognize destabilizing N-terminal residues of short-lived proteins as an essential element of specific degrons, called N-degrons. The RING E3 ligases UBR2 and UBR1 are major N-recognins that share size (200 kDa), conserved domains and substrate specificities to N-degrons. Despite the known function of the N-end rule pathway in degradation of cytosolic proteins, the major phenotype of UBR2-deficient male mice is infertility caused by arrest of spermatocytes at meiotic prophase I. UBR2-deficient spermatocytes are impaired in transcriptional silencing of sex chromosome-linked genes and ubiquitylation of histone H2A. In this study we show that the recruitment of UBR2 to meiotic chromosomes spatiotemporally correlates to the induction of chromatin-associated ubiquitylation, which is significantly impaired in UBR2-deficient spermatocytes. UBR2 functions as a scaffold E3 that promotes HR6B/UbcH2-dependent ubiquitylation of H2A and H2B but not H3 and H4, through a mechanism distinct from typical polyubiquitylation. The E3 activity of UBR2 in histone ubiquitylation is allosterically activated by dipeptides bearing destabilizing N-terminal residues. Insufficient monoubiquitylation and polyubiquitylation on UBR2-deficient meiotic chromosomes correlate to defects in double strand break (DSB) repair and other meiotic processes, resulting in pachytene arrest at stage IV and apoptosis. Some of these functions of UBR2 are observed in somatic cells, in which UBR2 is a chromatin-binding protein involved in chromatin-associated ubiquitylation upon DNA damage. UBR2-deficient somatic cells show an array of chromosomal abnormalities, including hyperproliferation, chromosome instability, and hypersensitivity to DNA damage-inducing reagents. UBR2-deficient mice enriched in C57 background die upon birth with defects in lung expansion and neural development. Thus, UBR2, known as the recognition component of a major cellular proteolytic system, is associated with chromatin and controls chromatin dynamics and gene expression in both germ cells and somatic cells
- β¦