2 research outputs found

    Three-Dimensional Surface Treatment of MoS<sub>2</sub> Using BCl<sub>3</sub> Plasma-Derived Radicals

    No full text
    The realization of next-generation gate-all-around field-effect transistors (FETs) using two-dimensional transition metal dichalcogenide (TMDC) semiconductors necessitates the exploration of a three-dimensional (3D) and damage-free surface treatment method to achieve uniform atomic layer-deposition (ALD) of a high-k dielectric film on the inert surface of a TMDC channel. This study developed a BCl3 plasma-derived radical treatment for MoS2 to functionalize MoS2 surfaces for the subsequent ALD of an ultrathin Al2O3 film. Microstructural verification demonstrated a complete coverage of an approximately 2 nm-thick Al2O3 film on a planar MoS2 surface, and the applicability of the technique to 3D structures was confirmed using a suspended MoS2 channel floating from the substrate. Density functional theory calculations supported by optical emission spectroscopy and X-ray photoelectron spectroscopy measurements revealed that BCl radicals, predominantly generated by the BCl3 plasma, adsorbed on MoS2 and facilitated the uniform nucleation of ultrathin ALD–Al2O3 films. Raman and photoluminescence measurements of monolayer MoS2 and electrical measurements of a bottom-gated FET confirmed negligible damage caused by the BCl3 plasma-derived radical treatment. Finally, the successful operation of a top-gated FET with an ultrathin ALD–Al2O3 (∼5 nm) gate dielectric film was demonstrated, indicating the effectiveness of the pretreatment

    Effect of the Thermal Conductivity on Resistive Switching in GeTe and Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> Nanowires

    No full text
    The thermal conduction characteristics of GeTe and Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub>(GST) nanowires were investigated using an optical method to determine the local temperature by Raman spectroscopy. Since the localization of surface charge in a single-crystalline nanostructure can enhance charge-phonon scattering, the thermal conductivity value (κ) of single crystalline GeTe and GST nanowires was decreased significantly to 1.44 Wm<sup>–1</sup> K<sup>–1</sup> for GeTe and 1.13 Wm<sup>–1</sup> K<sup>–1</sup> for GST, compared to reported values for polycrystalline structures. The SET-to-RESET state in single-crystalline GeTe and GST nanowires are characteristic of a memory device. Unlike previous reports using GeTe and GST nanowires, the SET-to-RESET characteristics showed a bipolar switching shape and no unipolar switching. In addition, after multiple cycles of operation, a significant change in morphology and composition was observed without any structural phase transition, indicating that atoms migrate toward the cathode or anode, depending on their electronegativities. This change caused by a field effect indicates that the structural phase transition does not occur in the case of GeTe and GST nanowires with a significantly lowered thermal conductivity and stable crystalline structure. Finally, the formation of voids and hillocks as the result of the electromigration critically degrades device reliability
    corecore