6,776 research outputs found

    Pattern formation and selection in quasi-static fracture

    Full text link
    Fracture in quasi-statically driven systems is studied by means of a discrete spring-block model. Developed from close comparison with desiccation experiments, it describes crack formation induced by friction on a substrate. The model produces cellular, hierarchical patterns of cracks, characterized by a mean fragment size linear in the layer thickness, in agreement with experiments. The selection of a stationary fragment size is explained by exploiting the correlations prior to cracking. A scaling behavior associated with the thickness and substrate coupling, derived and confirmed by simulations, suggests why patterns have similar morphology despite their disparity in scales.Comment: 4 pages, RevTeX, two-column, 5 PS figures include

    Observation of the Cabibbo-suppressed decay Xi_c+ -> p K- pi+

    Full text link
    We report the first observation of the Cabibbo-suppressed charm baryon decay Xi_c+ -> p K- pi+. We observe 150 +- 22 events for the signal. The data were accumulated using the SELEX spectrometer during the 1996-1997 fixed target run at Fermilab, chiefly from a 600 GeV/c Sigma- beam. The branching fractions of the decay relative to the Cabibbo-favored Xi_c+ -> Sigma+ K- pi+ and Xi_c+ -> X- pi+ pi+ are measured to be B(Xi_c+ -> p K- pi+)/B(Xi_c+ -> Sigma+ K- pi+) = 0.22 +- 0.06 +- 0.03 and B(Xi_c+ -> p K- pi+)/B(Xi_c+ -> X- pi+ pi+) = 0.20 +- 0.04 +- 0.02, respectively.Comment: 5 pages, RevTeX, 3 figures (postscript), Submitted to Phys. Rev. Let

    First Observation of the Doubly Charmed Baryon Xi_cc^+

    Full text link
    We observe a signal for the doubly charmed baryon Xi_cc^+ in the charged decay mode Xi_cc^+ --> Lambda_c^+ K- pi+ in data from SELEX, the charm hadro-production experiment at Fermilab. We observe an excess of 15.9 events over an expected background of 6.1 +/- 0.5 events, a statistical significance of 6.3sigma. The observed mass of this state is (3519 +/- 1) MeV/c^2. The Gaussian mass width of this state is 3MeV/c^2, consistent with resolution; its lifetime is less than 33fsec at 90% confidence.Comment: 5 pages, 3 figures, accepted for publication in Physical Review Letter

    First observation of a narrow charm-strange meson DsJ(2632) -> Ds eta and D0 K+

    Full text link
    We report the first observation of a charm-strange meson DsJ(2632) at a mass of 2632.6+/-1.6 MeV/c^2 in data from SELEX, the charm hadro-production experiment E781 at Fermilab. This state is seen in two decay modes, Ds eta and D0 K+. In the Ds eta decay mode we observe an excess of 49.3 events with a significance of 7.2sigma at a mass of 2635.9+/-2.9 MeV/c^2. There is a corresponding peak of 14 events with a significance of 5.3sigma at 2631.5+/-1.9 MeV/c^2 in the decay mode D0 K+. The decay width of this state is <17 MeV/c^2 at 90% confidence level. The relative branching ratio Gamma(D0K+)/Gamma(Dseta) is 0.16+/-0.06. The mechanism which keeps this state narrow is unclear. Its decay pattern is also unusual, being dominated by the Ds eta decay mode.Comment: 5 pages, 3 included eps figures. v2 as accepted for publication by PR

    First Measurement of pi e -> pi e gamma Pion Virtual Compton Scattering

    Full text link
    Pion Virtual Compton Scattering (VCS) via the reaction pi e --> pi e gamma was observed in the Fermilab E781 SELEX experiment. SELEX used a 600 GeV/c pi- beam incident on target atomic electrons, detecting the incident pi- and the final state pi-, electron and gamma. Theoretical predictions based on chiral perturbation theory are incorporated into a Monte Carlo simulation of the experiment and are compared to the data. The number of reconstructed events (9) and their distribution with respect to the kinematic variables (for the kinematic region studied) are in reasonable accord with the predictions. The corresponding pi- VCS experimental cross section is sigma=38.8+-13 nb, in agreement with the theoretical expectation sigma=34.7 nb.Comment: 10 pages, 12 figures, 4 tables, 25 references, SELEX home page is http://fn781a.fnal.gov/, revised July 21, 2002 in response to journal referee Comment

    Amplified Squeezed States: Analyzing Loss and Phase Noise

    Full text link
    Phase-sensitive amplification of squeezed states is a technique to mitigate high detection loss, e.g. at 2-micrometre wavelengths. Our analytical model of amplified squeezed states expands on the effect of phase noise and derives two practical parameters: the effective measurable squeezing and the effective detection efficiency. A case study including realistic parameters demonstrates the benefit of phase-sensitive amplification. We identified the phase noise in the optical parametric amplifier (OPA) minimally affects the squeezing level, enabling increased gain of the OPA. This scheme is compatible with proposed gravitational-wave detectors and consistent with applications in quantum systems that are degraded by output coupling loss in optical waveguides.Comment: 9 pages, 6 figures, 1 table. Submitted to Physical Review

    A new measurement of antineutrino oscillation with the full detector configuration at Daya Bay

    Full text link
    We report a new measurement of electron antineutrino disappearance using the fully-constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9×\times105^5 GWth_{\rm th}-ton-days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six 241^{241}Am-13^{13}C radioactive calibration sources reduced the background by a factor of two for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of sin22θ13\sin^{2}2\theta_{13} and Δmee2|\Delta m^2_{ee}| were halved as a result of these improvements. Analysis of the relative antineutrino rates and energy spectra between detectors gave sin22θ13=0.084±0.005\sin^{2}2\theta_{13} = 0.084\pm0.005 and Δmee2=(2.42±0.11)×103|\Delta m^{2}_{ee}|= (2.42\pm0.11) \times 10^{-3} eV2^2 in the three-neutrino framework.Comment: Updated to match final published versio

    A side-by-side comparison of Daya Bay antineutrino detectors

    Get PDF
    The Daya Bay Reactor Neutrino Experiment is designed to determine precisely the neutrino mixing angle θ13\theta_{13} with a sensitivity better than 0.01 in the parameter sin22θ13^22\theta_{13} at the 90% confidence level. To achieve this goal, the collaboration will build eight functionally identical antineutrino detectors. The first two detectors have been constructed, installed and commissioned in Experimental Hall 1, with steady data-taking beginning September 23, 2011. A comparison of the data collected over the subsequent three months indicates that the detectors are functionally identical, and that detector-related systematic uncertainties exceed requirements.Comment: 24 pages, 36 figure
    corecore