31 research outputs found

    Novel Strategies for Malaria Vaccine Design

    Get PDF
    The quest for a licensed effective vaccine against malaria remains a global priority. Even though classical vaccine design strategies have been successful for some viral and bacterial pathogens, little success has been achieved for Plasmodium falciparum, which causes the deadliest form of malaria due to its diversity and ability to evade host immune responses. Nevertheless, recent advances in vaccinology through high throughput discovery of immune correlates of protection, lymphocyte repertoire sequencing and structural design of immunogens, provide a comprehensive approach to identifying and designing a highly efficacious vaccine for malaria. In this review, we discuss novel vaccine approaches that can be employed in malaria vaccine design

    Macrophage susceptibility to infection by Ghanaian Mycobacterium tuberculosis complex lineages 4 and 5 varies with self-reported ethnicity

    Get PDF
    BackgroundThe epidemiology of Mycobacterium tuberculosis complex (MTBC) lineage 5 (L5) infections in Ghana revealed a significantly increased prevalence in Ewes compared to other self-reported ethnic groups. In that context, we sought to investigate the early phase of tuberculosis (TB) infection using ex vivo infection of macrophages derived from the blood of Ewe and Akan ethnic group volunteers with MTBC L4 and L5 strains.MethodsThe study participants consisted of 16 controls, among which self-reported Akan and Ewe ethnicity was equally represented, as well as 20 cured TB cases consisting of 11 Akans and 9 Ewes. Peripheral blood mononuclear cells were isolated from both healthy controls and cured TB cases. CD14+ monocytes were isolated and differentiated into monocyte-derived macrophages (MDMs) before infection with L4 or L5 endemic strains. The bacterial load was assessed after 2 hours (uptake) as well as 3 and 7 days post-infection.ResultsWe observed a higher capacity of MDMs from Ewes to phagocytose L4 strains (p < 0.001), translating into a higher bacillary load on day 7 (p < 0.001) compared to L5, despite the higher replication rate of L5 in Ewe MDMs (fold change: 1.4 vs. 1.2, p = 0.03) among the controls. On the contrary, within macrophages from Akans, we observed a significantly higher phagocytic uptake of L5 (p < 0.001) compared to L4, also translating into a higher load on day 7 (p = 0.04). However, the replication rate of L4 in Akan MDMs was higher than that of L5 (fold change: L4 = 1.2, L4 = 1.1, p = 0.04). Although there was no significant difference in the uptake of L4 and L5 among cured TB cases, there was a higher bacterial load of both L4 (p = 0.02) and L5 (p = 0.02) on day 7 in Ewe MDMs.ConclusionOur results suggest that host ethnicity (driven by host genetic diversity), MTBC genetic diversity, and individual TB infection history are all acting together to modulate the outcome of macrophage infections by MTBC

    Serum biochemical parameters and cytokine profiles associated with natural African trypanosome infections in cattle.

    Get PDF
    BACKGROUND: Animal African trypanosomiasis (AAT) greatly affects livestock production in sub-Saharan Africa. In Ghana prevalence of AAT is estimated to range between 5 and 50%. Studies have reported serum biochemical aberrations and variability in cytokine profiles in animals during infection. However, information regarding the biochemical parameters and cytokine profiles associated with natural infections are limited. This study was therefore aimed at investigating changes in the levels of serum biochemical parameters and inflammatory cytokines during a natural infection. METHODS: Nested internal transcribed spacer (ITS)-based PCR and sequencing were used to characterise trypanosome infection in cattle at two areas in Ghana (Adidome and Accra) of different endemicities. The cattle were sampled at four to five-week intervals over a period of six months. Levels of serum biochemical parameters, including creatinine, cholesterol, alkaline phosphatase (ALP), alanine aminotransferase (ALT), total bilirubin and total protein and cytokines (interleukin 10, interleukin 4, interleukin 12, interferon gamma and tumor necrosis factor alpha) were measured in serum samples and then compared between infected cattle and uninfected controls. RESULTS: The predominant trypanosome species detected in Accra (non-endemic) and Adidome (endemic) were Trypanosoma theileri and Trypanosoma vivax, respectively. Serum biochemical parameters were similar between infected and uninfected cattle in Accra. Infected cattle at Adidome however, had significantly higher levels of ALP, creatinine, total protein and total bilirubin (P < 0.05) and significantly lower levels of cholesterol (P < 0.05) at specific time points. At basal levels and during infection, significantly higher pro-inflammatory to anti-inflammatory (Th1/Th2) cytokine ratios were observed in cattle at Adidome compared to Accra (P < 0.05), indicating a shift towards Th1 immune response in Adidome. Levels of IL-10 were, however, significantly elevated in infected cattle in Accra (P < 0.05), suggesting high anti-inflammatory cytokine response in Accra. CONCLUSION: These results suggests that cattle in an endemic area repeatedly infected with trypanosomes of different species or different antigenic types demonstrate high pro-inflammatory (Th1) immune response and biochemical alterations whereas cattle in a non-endemic area with predominantly chronic T. theileri infections demonstrate high anti-inflammatory response and no biochemical alterations

    Towards a blood stage malaria vaccine, dealing with allelic polymorphism in the vaccine candidate apical membrane antihen 1

    Get PDF
    A vaccine against Plasmodium falciparum is needed to augment currently available malaria control tools. A handful of parasite antigens are at various stages of pre-clinical and clinical development. Amongst these is P. falciparum apical membrane antigen 1 (PfAMA1), an antigen expressed by asexual stage parasites and believed to be important for the parasite’s invasion of both red blood cells and liver cells. The immune response to PfAMA1 is mediated mainly by antibodies that prevent parasite invasion of host cells. PfAMA1 however shows allelic polymorphism, with anti-PfAMA1 antibody responses exhibiting strain-specificity. This thesis investigated multi-allele vaccine formulation strategies that would overcome the strain-specificity of antibody responses to PfAMA1. The main findings of this thesis are that i) different PfAMA1 alleles share epitopes to which functional cross-strain antibodies can be induced, ii) a three-allele PfAMA1 formulation yields the greatest proportion of functional cross-strain antibodies, and iii) three PfAMA1 alleles, irrespective of the adjuvant used for formulation and whether they are administrated as a multi-allele formulation or sequentially, induce similar proportions of cross-strain antibodies. Overall, a multi-allele formulation with three in silico-designed PfAMA1 candidates yields antibodies that inhibit several parasites in vitro and warrant their development as a human blood stage vaccine

    EDiP: the Epitope Dilution Phenomenon. Lessons learnt from a malaria vaccine antigen and its applicability to polymorphic antigens

    No full text
    Introduction: Polymorphism in vaccine antigens poses major challenges to vaccinologists. The Plasmodium falciparum Apical Membrane Antigen 1 (AMA1) poses such a challenge. We found that immunization with a mixture of three variants yielded functional antibody levels to all variants comparable to levels induced by monovalent immunization. The mechanism behind the observed broadening was shown to be an increase in the fraction of cross-reactive antibodies, most likely because strain-specific epitopes are present at lower frequency relative to conserved epitopes. Areas covered: We hereby introduce the Epitope Dilution Phenomenon (EDiP) as a practical strategy for the induction of broad, cross-variant antibody responses against polymorphic antigens and discuss the utility and applicability of this phenomenon for the development of vaccines against polymorphic antigens of pathogens like Influenza, HIV, Dengue and Plasmodium. Expert commentary: EDiP can be used to broaden antibody responses by immunizing with a mixture of at least 3 antigenic variants, where the variants included can differ, yet yield broadened responses

    Activity of Herbal Medicines on Plasmodium falciparum Gametocytes: Implications for Malaria Transmission in Ghana.

    No full text
    Malaria still remains a major health issue in Ghana despite the introduction of Artemisinin-based combination therapy (ACT) coupled with other preventative measures such as the use of insecticide treated nets (ITNs). The global quest for eradication of malaria has heightened the interest of identifying drugs that target the sexual stage of the parasite, referred to as transmission-blocking drugs. This study aimed at assessing the efficacy and gametocydal effects of some commonly used herbal malaria products in Ghana.After identifying herbal anti-malarial products frequently purchased on the Ghanaian market, ten of them were selected and lyophilized. In vitro drug sensitivity testing of different concentrations of the herbal products was carried out on asexual and in vitro generated gametocytes of the 3D7 strain of Plasmodium falciparum. The efficacies of the products were assessed by microscopy. Cultures containing low dose of RT also produced the least number of late stage gametocytes. Two of the herbal products CM and RT inhibited the growth of late stage gametocytes by > 80% at 100 μg/ml whilst KG was the most inhibitory to early stage gametocytes at that same concentration. However at 1 μg/ml, only YF significantly inhibited the survival of late stage gametocytes although at that same concentration YF barely inhibited the survival of early stage gametocytes.Herbal product RT (Aloe schweinfurthii, Khaya senegalensis, Piliostigma thonningii and Cassia siamea) demonstrated properties of a highly efficacious gametocydal product. Low dose of herbal product RT exhibited the highest gametocydal activity and at 100 μg/ml, RT exhibited >80% inhibition of late stage gametocytes. However inhibition of asexual stage parasite by RT was not optimal. Improving the asexual inhibition of RT could convert RT into an ideal antimalarial herbal product. We also found that generally C. sanguinolenta containing herbal products exhibited gametocydal activity in addition to high asexual efficacy. Herbal products with high gametocydal activity can help in the fight to reduce malaria transmission

    Characterization of T cell activation and regulation in children with asymptomatic Plasmodium falciparum infection

    No full text
    Abstract Background Asymptomatic Plasmodium infections are characterized by the absence of clinical disease and the ability to restrict parasite replication. Increasing levels of regulatory T cells (Tregs) in Plasmodium falciparum infections have been associated with the risk of developing clinical disease, suggesting that individuals with asymptomatic infections may have reduced Treg frequency. However, the relationship between Tregs, cellular activation and parasite control in asymptomatic malaria remains unclear. Methods In a cross-sectional study, the levels of Tregs and other T cell activation phenotypes were compared using flow cytometry in symptomatic, asymptomatic and uninfected children before and after stimulation with infected red blood cell lysates (iRBCs). In addition, the association between these T cell phenotypes and parasitaemia were investigated. Results In children with asymptomatic infections, levels of Tregs and activated T cells were comparable to those in healthy controls but significantly lower than those in symptomatic children. After iRBC stimulation, levels of Tregs remained lower for asymptomatic versus symptomatic children. In contrast, levels of activated T cells were higher for asymptomatic children. Strikingly, the pre-stimulation levels of two T cell activation phenotypes (CD8+CD69+ and CD8+CD25+CD69+) and the post-stimulation levels of two regulatory phenotypes (CD4+CD25+Foxp3+ and CD8+CD25+Foxp3+) were significantly positively correlated with and explained 68% of the individual variation in parasitaemia. A machine-learning model based on levels of these four phenotypes accurately distinguished between asymptomatic and symptomatic children (sensitivity = 86%, specificity = 94%), suggesting that these phenotypes govern the observed variation in disease status. Conclusion Compared to symptomatic P. falciparum infections, in children asymptomatic infections are characterized by lower levels of Tregs and activated T cells, which are associated with lower parasitaemia. The results indicate that T cell regulatory and activation phenotypes govern both parasitaemia and disease status in paediatric malaria in the studied sub-Saharan African population

    Gametocyte growth inhibition by the 10 herbal products.

    No full text
    <p>Asexual <i>P</i>. <i>falciparum</i> parasites (3D7 strain) were maintained in continuous culture to generate gametocytes. Early stage (day 12) and late stage (day 14) gametocytes were purified and treated with the 10 herbal products for 72 hours. A) early stage gametocytes treated with 1 μg/ml herbal extract, B) late stage gametocytes treated with 1 μg/ml herbal extract, C) early stage gametocytes treated with 100 μg/ml herbal extract, D) late stage gametocytes treated with 100 μg/ml herbal extract. Artesunate (AS) and primaquine (PQ) were added as standard control drugs for the early and late stage gametocytes respectively. For each herbal product, the number of gametocytes remaining after 72 hours was determined by Giemsa stained thin smears and expressed as a percentage of the number in an untreated control setup. Assays were done in triplicate and error bars represent the standard deviations from at least two repeat experiments. Asterisks (*) indicate inhibitions that were statistically significantly lower than that of the respective standard drugs.</p
    corecore