17 research outputs found

    The neutron and its role in cosmology and particle physics

    Full text link
    Experiments with cold and ultracold neutrons have reached a level of precision such that problems far beyond the scale of the present Standard Model of particle physics become accessible to experimental investigation. Due to the close links between particle physics and cosmology, these studies also permit a deep look into the very first instances of our universe. First addressed in this article, both in theory and experiment, is the problem of baryogenesis ... The question how baryogenesis could have happened is open to experimental tests, and it turns out that this problem can be curbed by the very stringent limits on an electric dipole moment of the neutron, a quantity that also has deep implications for particle physics. Then we discuss the recent spectacular observation of neutron quantization in the earth's gravitational field and of resonance transitions between such gravitational energy states. These measurements, together with new evaluations of neutron scattering data, set new constraints on deviations from Newton's gravitational law at the picometer scale. Such deviations are predicted in modern theories with extra-dimensions that propose unification of the Planck scale with the scale of the Standard Model ... Another main topic is the weak-interaction parameters in various fields of physics and astrophysics that must all be derived from measured neutron decay data. Up to now, about 10 different neutron decay observables have been measured, much more than needed in the electroweak Standard Model. This allows various precise tests for new physics beyond the Standard Model, competing with or surpassing similar tests at high-energy. The review ends with a discussion of neutron and nuclear data required in the synthesis of the elements during the "first three minutes" and later on in stellar nucleosynthesis.Comment: 91 pages, 30 figures, accepted by Reviews of Modern Physic

    Synthesis And Investigation Of Magnetic Properties Of Substituted Ferrite Nanoparticles Of Spinel System Mn1-XZnX[Fe2-YLY]O4

    No full text
    Superparamagnetic nanoparticles of the spinel ferrite four-element system Mn1-xZnx[Fe2-yLy]O4 (where L:Gd3+, La3+, Ce3+, Eu3+, Dy3+, Er3+,Yb3+) were synthesized by the co-precipitation method. The magnetic moments of the 10 nm diameter nanoparticles were comparable to the ones of Fe3O4 nanoparticles. A comparatively low TC (∼52-72 °C) was observed for some of the compositions. The heating mechanism of the superparamagnetic particles in the AC magnetic field at radiofrequency range is discussed and especially the absence of the hysteresis loop in the M-H curve at room temperature. One possible explanation-spontaneous particle agglomeration-was experimentally verified. © 2006 Elsevier B.V. All rights reserved

    Measurement of the charge ratio of atmospheric muons with the CMS detector

    No full text
    We present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/ c to 1 TeV/ c . The surface flux ratio is measured to be 1.2766±0.0032(stat.)±0.0032(syst.) , independent of the muon momentum, below 100 GeV/ c . This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments.We present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/c to 1 TeV/c. The surface flux ratio is measured to be 1.2766 \pm 0.0032(stat.) \pm 0.0032 (syst.), independent of the muon momentum, below 100 GeV/c. This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments

    Transverse-momentum and pseudorapidity distributions of charged hadrons in pppp collisions at s\sqrt{s} = 7 TeV

    No full text
    Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at s=7\sqrt{s} = 7~TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit-pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity \dnchdeta|_{|\eta| < 0.5} = 5.78\pm 0.01\stat\pm 0.23\syst for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from s=0.9\sqrt{s} = 0.9 to 7~TeV is 66.1\%\pm 1.0\%\stat\pm 4.2\%\syst. The mean transverse momentum is measured to be 0.545\pm 0.005\stat\pm 0.015\syst\GeVc. The results are compared with similar measurements at lower energies.Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at sqrt(s) = 7 TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit-pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity, dN(charged)/d(eta), for |eta| < 0.5, of 5.78 +/- 0.01 (stat) +/- 0.23 (syst) for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from sqrt(s) = 0.9 to 7 TeV is 66.1% +/- 1.0% (stat) +/- 4.2% (syst). The mean transverse momentum is measured to be 0.545 +/- 0.005 (stat) +/- 0.015 (syst) GeV/c. The results are compared with similar measurements at lower energies

    Search for Supersymmetry in pp Collisions at 7 TeV in Events with Jets and Missing Transverse Energy

    No full text
    A search for supersymmetry with R-parity conservation in proton-proton collisions at a centre-of-mass energy of 7 TeV is presented. The data correspond to an integrated luminosity of 35 inverse picobarns collected by the CMS experiment at the LHC. The search is performed in events with jets and significant missing transverse energy, characteristic of the decays of heavy, pair-produced squarks and gluinos. The primary background, from standard model multijet production, is reduced by several orders of magnitude to a negligible level by the application of a set of robust kinematic requirements. With this selection, the data are consistent with the standard model backgrounds, namely t t-bar, W + jet and Z + jet production, which are estimated from data control samples. Limits are set on the parameters of the constrained minimal supersymmetric extension of the standard model. These limits extend those set previously by experiments at the Tevatron and LEP colliders.A search for supersymmetry with R-parity conservation in proton–proton collisions at a centre-of-mass energy of 7 TeV is presented. The data correspond to an integrated luminosity of 35 pb−1 collected by the CMS experiment at the LHC. The search is performed in events with jets and significant missing transverse energy, characteristic of the decays of heavy, pair-produced squarks and gluinos. The primary background, from standard model multijet production, is reduced by several orders of magnitude to a negligible level by the application of a set of robust kinematic requirements. With this selection, the data are consistent with the standard model backgrounds, namely tt¯ , W + jet and Z + jet production, which are estimated from data control samples. Limits are set on the parameters of the constrained minimal supersymmetric extension of the standard model. These limits extend those set previously by experiments at the Tevatron and LEP colliders.A search for supersymmetry with R-parity conservation in proton-proton collisions at a centre-of-mass energy of 7 TeV is presented. The data correspond to an integrated luminosity of 35 inverse picobarns collected by the CMS experiment at the LHC. The search is performed in events with jets and significant missing transverse energy, characteristic of the decays of heavy, pair-produced squarks and gluinos. The primary background, from standard model multijet production, is reduced by several orders of magnitude to a negligible level by the application of a set of robust kinematic requirements. With this selection, the data are consistent with the standard model backgrounds, namely t t-bar, W + jet and Z + jet production, which are estimated from data control samples. Limits are set on the parameters of the constrained minimal supersymmetric extension of the standard model. These limits extend those set previously by experiments at the Tevatron and LEP colliders

    Search for Pair Production of Second-Generation Scalar Leptoquarks in pp Collisions at sqrt(s) = 7 TeV

    No full text
    A search for pair production of second-generation scalar leptoquarks in the final state with two muons and two jets is performed using proton-proton collision data at sqrt(s) = 7 TeV collected by the CMS detector at the LHC. The data sample used corresponds to an integrated luminosity of 34 inverse picobarns. The number of observed events is in good agreement with the predictions from the standard model processes. An upper limit is set on the second-generation leptoquark cross section times beta^2 as a function of the leptoquark mass, and leptoquarks with masses below 394 GeV are excluded at a 95% confidence level for beta = 1, where beta is the leptoquark branching fraction into a muon and a quark. These limits are the most stringent to date

    Measurement of Bose-Einstein Correlations in pppp Collisions at s=0.9\sqrt{s}=0.9 and 7 TeV

    No full text
    corecore