9 research outputs found

    Organogels versus Hydrogels: Advantages, Challenges, and Applications

    Get PDF
    Organogels are an important class of gels, and are comparable to hydrogels owing to their properties as liquid-infused soft materials. Despite the extensive choice of liquid media and compatible networks that can provide a broader range of properties, relatively few studies are reported in this area. This review presents the applicability of organogels concerning their choice of components, unique properties, and applications. Their distinctive features compared to other gels are discussed, including multi-stimuli responses, affinity to a broad range of substances, thermal and environmental stability, electronic and ionic conductivity, and actuation. The active role of solvents is highlighted in the versatility of organogel properties. To differentiate between organogels and other gels, these are classified as gels filled with different organic liquids, including highly polar organic solvents and binary solvent systems. Most promising applications of organogels as sophisticated multifunctional materials are discussed in light of their unique features

    Designing Inherently Photodegradable Cell‐Adhesive Hydrogels for 3D Cell Culture

    Get PDF
    Light-based microfabrication techniques constitute an indispensable approach to fabricate tissue assemblies, benefiting from noncontact spatially and temporarily controlled manipulation of soft matter. Light-triggered degradation of soft materials, such as hydrogels, is important in tissue engineering, bioprinting, and related fields. The photoresponsiveness of hydrogels is generally not intrinsic and requires complex synthetic procedures wherein photoresponsive crosslinking groups are incorporated into the hydrogel. This paper demonstrates a novel biocompatible and inherently photodegradable poly(ethylene glycol) methacrylate (PEGMA)-based gelatin-methacryloyl (GelMA)-containing hydrogel that can be used to culture cells in 3D for at least 14 d. These gels are conveniently and quickly degraded via UV irradiation for 10 min to produce structured hydrogels of various geometries, sizes, and free-standing cell-laden hydrogel particles. These structures can be flexibly produced on demand. In particular, photodegradation can be temporarily delayed from photopolymerization, offering an alternative to hydrogel array production via photopolymerization with a photomask. The paper investigates the influences of hydrogel composition and swelling liquid on both its photodegradability and biocompatibility

    Liquid Wells as Self-Healing, Functional Analogues to Solid Vessels

    Get PDF
    Liquids are traditionally handled and stored in solid vessels. Solid walls are not functional, adaptive, or self-repairing, and are difficult to remove and re-form. Liquid walls can overcome these limitations, but cannot form free-standing 3D walls. Herein, a liquid analogue of a well, termed a “liquid well” is introduced. Water tethered to a surface with hydrophobic–hydrophilic core–shell patterns forms stable liquid walls capable of containing another immiscible fluid, similar to fluid confinement by solid walls. Liquid wells with different liquids, volumes, and shapes are prepared and investigated by confocal and Raman microscopy. The confinement of various low-surface-tension liquids (LSTLs) on surfaces by liquid wells can compete with or be complementary to existing confinement strategies using perfluorinated surfaces, for example, in terms of the shape and height of the confined LSTLs. Liquid wells show unique properties arising from their liquid aggregate state: they are self-healing, dynamic, and functional, that is, not restricted to a passive confining role. Water walls can be easily removed and re-formed, making them interesting as sacrificial templates. This is demonstrated in a process termed water-templated polymerization (WTP). Numerical phase-field model simulations are performed to scrutinize the conditions required for the formation of stable liquid wells

    Nanoliter Scale Parallel Liquid–Liquid Extraction for High‐Throughput Purification on a Droplet Microarray

    Get PDF
    In the current drug discovery process, the synthesis of compound libraries is separated from biological screenings both conceptually and technologically. One of the reasons is that parallel on-chip high-throughput purification of synthesized compounds is still a major challenge. Here, on-chip miniaturized high-throughput liquid–liquid extraction in volumes down to 150 nL with efficiency comparable to or better than large-scale extraction utilizing separation funnels is demonstrated. The method is based on automated and programmable merging of arrays of aqueous nanoliter droplets with organic droplets. Multi-step extraction performed simultaneously or with changing conditions as well as handling of femtomoles of compounds are demonstrated. In addition, the extraction efficiency is analyzed with a fast optical readout as well as matrix-assisted laser desorption ionization-mass spectrometry on-chip detection. The new massively parallel and miniaturized purification method adds another important tool to the chemBIOS concept combining chemical combinatorial synthesis with biological screenings on the same miniaturized droplet microarray platform, which will be essential to accelerate drug discovery

    Inhibition of lysyl oxidases synergizes with 5-azacytidine to restore erythropoiesis in myelodysplastic and myeloid malignancies

    Get PDF
    Limited response rates and frequent relapses during standard of care with hypomethylating agents in myelodysplastic neoplasms (MN) require urgent improvement of this treatment indication. Here, by combining 5-azacytidine (5-AZA) with the pan-lysyl oxidase inhibitor PXS-5505, we demonstrate superior restoration of erythroid differentiation in hematopoietic stem and progenitor cells (HSPCs) of MN patients in 20/31 cases (65%) versus 9/31 cases (29%) treated with 5-AZA alone. This effect requires direct contact of HSPCs with bone marrow stroma components and is dependent on integrin signaling. We further confirm these results in vivo using a bone marrow niche-dependent MN xenograft model in female NSG mice, in which we additionally demonstrate an enforced reduction of dominant clones as well as significant attenuation of disease expansion and normalization of spleen sizes. Overall, these results lay out a strong pre-clinical rationale for efficacy of combination treatment of 5-AZA with PXS-5505 especially for anemic MN

    Designing Inherently Photodegradable Cell‐Adhesive Hydrogels for 3D Cell Culture

    No full text
    Light-based microfabrication techniques constitute an indispensable approach to fabricate tissue assemblies, benefiting from noncontact spatially and temporarily controlled manipulation of soft matter. Light-triggered degradation of soft materials, such as hydrogels, is important in tissue engineering, bioprinting, and related fields. The photoresponsiveness of hydrogels is generally not intrinsic and requires complex synthetic procedures wherein photoresponsive crosslinking groups are incorporated into the hydrogel. This paper demonstrates a novel biocompatible and inherently photodegradable poly(ethylene glycol) methacrylate (PEGMA)-based gelatin-methacryloyl (GelMA)-containing hydrogel that can be used to culture cells in 3D for at least 14 d. These gels are conveniently and quickly degraded via UV irradiation for 10 min to produce structured hydrogels of various geometries, sizes, and free-standing cell-laden hydrogel particles. These structures can be flexibly produced on demand. In particular, photodegradation can be temporarily delayed from photopolymerization, offering an alternative to hydrogel array production via photopolymerization with a photomask. The paper investigates the influences of hydrogel composition and swelling liquid on both its photodegradability and biocompatibility

    Liquid Wells as Self‐Healing, Functional Analogues to Solid Vessels

    No full text
    Liquids are traditionally handled and stored in solid vessels. Solid walls are not functional, adaptive, or self-repairing, and are difficult to remove and re-form. Liquid walls can overcome these limitations, but cannot form free-standing 3D walls. Herein, a liquid analogue of a well, termed a “liquid well” is introduced. Water tethered to a surface with hydrophobic–hydrophilic core–shell patterns forms stable liquid walls capable of containing another immiscible fluid, similar to fluid confinement by solid walls. Liquid wells with different liquids, volumes, and shapes are prepared and investigated by confocal and Raman microscopy. The confinement of various low-surface-tension liquids (LSTLs) on surfaces by liquid wells can compete with or be complementary to existing confinement strategies using perfluorinated surfaces, for example, in terms of the shape and height of the confined LSTLs. Liquid wells show unique properties arising from their liquid aggregate state: they are self-healing, dynamic, and functional, that is, not restricted to a passive confining role. Water walls can be easily removed and re-formed, making them interesting as sacrificial templates. This is demonstrated in a process termed water-templated polymerization (WTP). Numerical phase-field model simulations are performed to scrutinize the conditions required for the formation of stable liquid wells
    corecore