203 research outputs found

    Interdisciplinary therapy for severe periodontitis with Angle Class II Division 1 malocclusion : A case report with 7-year follow-up

    Get PDF
    Background: Previous studies have suggested that occlusal discrepancy is a risk factor contributing to periodontal disease. 1-3 Occlusal discrepancy could increase the risk of infrabony defects. This is a case of a patient with severe periodontitis who exhibited many infrabony defects in the molar region due to malocclusion-induced trauma. Here, we report the 7-year prognosis of the patient after periodontal regenerative and comprehensive orthodontic therapies for functional recovery with implant prosthodontics. Case Description: A 54-year-old female presented with the chief complaint of masticatory disturbance. In the molar region, significant tooth mobility, deep periodontal pockets, and infrabony defects were observed. She had excessive overjet, resulting in collapse of anterior guidance. Malocclusion was considered to be an exacerbating factor of the infrabony defects. After initial periodontal therapy, we performed periodontal regenerative therapy in the mandibular molar regions. We carefully placed implants in a position in the maxillary molar region that would ensure an appropriate anterior dental relationship after orthodontic treatment. Comprehensive orthodontic treatment was subsequently performed using implants as anchoring units. Then, definitive surgery was performed on the mandibular molars before placing the final prosthesis. A favorable periodontal condition and a stable occlusion have been maintained for the 7-year post-treatment period. Practical Implications: Comprehensive and interdisciplinary treatment enables stable occlusion and establishment of periodontal tissue and peri-implant tissues with high cleansability, even in patients with severe periodontitis and malocclusion. In the present case, a favorable long-term treatment outcome can be expected

    Comprehensive treatment for severe periodontitis with pathologic tooth migration−related bimaxillary protrusion : A case report with 3-year follow-up

    Get PDF
    Background: Patients with severe periodontitis often experience pathologic tooth migration (PTM), which impairs esthetics and leads to occlusal disharmony (e.g., premature contacts and/or traumatic occlusion) that can further exacerbate periodontitis. Here, we describe a patient who exhibited severe periodontitis with PTM-related bimaxillary protrusion. This report includes 3-year clinical outcomes following periodontal regenerative therapy, implant-anchored orthodontic therapy, and implant prosthodontics intended to achieve both functional and esthetic improvements. Case Description: A 63-year-old woman presented with the chief complaint of upper anterior tooth mobility. Clinical examination revealed excessive tooth mobility, deep periodontal pockets, and infrabony defects in all teeth. All teeth exhibited PTM; the mandibular anterior teeth exhibited marked protrusion caused by the progression of periodontitis. After initial periodontal therapy, periodontal regenerative therapy was performed in all molar regions. At 9 and 6 months postoperatively, comprehensive orthodontic treatment was initiated for the mandible and maxilla, respectively, using orthodontic anchorage devices to achieve acceptable functional occlusion. After orthodontic treatment, staged guided bone regeneration was performed and dental implants were placed in the severely resorbed maxillary anterior ridge. This comprehensive treatment yielded favorable periodontal conditions, stable occlusion, and good esthetic outcomes. Practical Implications: Favorable esthetics, stable occlusion, and highly cleansable periodontal tissues were achieved with well-planned interdisciplinary and comprehensive treatment, although the patient had severe periodontitis and PTM-related bimaxillary protrusion

    UCP1-dependent and UCP1-independent metabolic changes induced by acute cold exposure in brown adipose tissue of mice

    Get PDF
    Background: Brown adipose tissue (BAT) is a site of metabolic thermogenesis mediated by mitochondrial uncoupling protein 1 (UCP1) and represents a target for a therapeutic intervention in obesity. Cold exposure activates UCP1-mediated thermogenesis in BAT and causes drastic changes in glucose, lipid, and amino acid metabolism; however, the relationship between these metabolic changes and UCP1-mediated thermogenesis is not fully understood. Methods: We conducted metabolomic and GeneChip array analyses of BAT after 4-h exposure to cold temperature (10 °C) in wild-type (WT) and UCP1-KO mice. Results: Cold exposure largely increased metabolites of the glycolysis pathway and lactic acid levels in WT, but not in UCP1-KO, mice, indicating that aerobic glycolysis is enhanced as a consequence of UCP1-mediated thermogenesis. GeneChip array analysis of BAT revealed that there were 2865 genes upregulated by cold exposure in WT mice, and 838 of these were upregulated and 74 were downregulated in UCP1-KO mice. Pathway analysis revealed the enrichment of genes involved in fatty acid (FA) β oxidation and triglyceride (TG) synthesis in both WT and UCP1-KO mice, suggesting that these metabolic pathways were enhanced by cold exposure independently of UCP1-mediated thermogenesis. FA and cholesterol biosynthesis pathways were enhanced only in UCP1-KO mice. Cold exposure also significantly increased the BAT content of proline, tryptophan, and phenylalanine amino acids in both WT and UCP1-KO mice. In WT mice, cold exposure significantly increased glutamine content and enhanced the expression of genes related to glutamine metabolism. Surprisingly, aspartate was almost completely depleted after cold exposure in UCP1-KO mice. Gene expression analysis suggested that aspartate was actively utilized after cold exposure both in WT and UCP1-KO mice, but it was replenished from intracellular N-acetyl-aspartate in WT mice. Conclusions: These results revealed that cold exposure induces UCP1-mediated thermogenesis-dependent glucose utilization and UCP1-independent active lipid metabolism in BAT. In addition, cold exposure largely affects amino acid metabolism in BAT, especially UCP1-dependently enhances glutamine utilization. These results contribute a comprehensive understanding of UCP1-mediated thermogenesis-dependent and thermogenesis-independent metabolism in BAT

    Accuracy and Time Delay of Glucose Measurements of Continuous Glucose Monitoring and Bedside Artificial Pancreas During Hyperglycemic and Euglycemic Hyperinsulinemic Glucose Clamp Study

    Get PDF
    Background: Glucose values of continuous glucose monitoring (CGM) have time delays compared with plasma glucose (PG) values. Artificial pancreas (STG-55, Nikkiso, Japan) (AP), which measures venous blood glucose directly, also has a time delay because of the long tubing lines from sampling vessel to the glucose sensor. We investigate accuracy and time delay of CGM and AP in comparison with PG values during 2-step glucose clamp study. Methods: Seven patients with type 2 diabetes and 2 healthy volunteers were included in this study. CGM (Enlite sensor, Medtronic, CA) was attached on the day before the experiment. Hyperglycemic (200 mg/dL) clamp was performed for 90 minutes, followed by euglycemic (100 mg/dL) hyperinsulinemic (100 μU/mL) clamp for 90-120 minutes using AP. CGM sensor glucose was calibrated just before and after the clamp study. AP and CGM values were compared with PG values. Results: AP values were significantly lower than PG values at 5, 30 minute during hyperglycemic clamp. In comparison, CGM value at 0 minute was significantly higher, and its following values were almost significantly lower than PG values. The time delay of AP and CGM values to reach maximum glucose levels were 5.0 ± 22.3 (NS) and 28.6 ± 32.5 (p<0.05) min, respectively. Mean absolute rate difference of CGM was significantly higher than AP (24.0 ± 7.6 vs. 15.3 ± 4.6, p < 0.05) during glucose rising period (0-45 min), however, there are no significant difference during other periods. Conclusions: Both CGM and AP failed to follow plasma glucose values during non-physiologically rapid glucose rising, however, indicated accurate values during physiological glucose change

    Histidine-rich glycoprotein as a prognostic biomarker for sepsis

    Get PDF
    Various biomarkers have been proposed for sepsis; however, only a few become the standard. We previously reported that plasma histidine-rich glycoprotein (HRG) levels decreased in septic mice, and supplemental infusion of HRG improved survival in mice model of sepsis. Moreover, our previous clinical study demonstrated that HRG levels in septic patients were lower than those in noninfective systemic inflammatory response syndrome patients, and it could be a biomarker for sepsis. In this study, we focused on septic patients and assessed the differences in HRG levels between the non-survivors and survivors. We studied ICU patients newly diagnosed with sepsis. Blood samples were collected within 24 h of ICU admission, and HRG levels were determined using an enzyme-linked immunosorbent assay. Ninety-nine septic patients from 11 institutes in Japan were included. HRG levels were significantly lower in non-survivors (n=16) than in survivors (n=83) (median, 15.1 [interquartile ranges, 12.7-16.6] vs. 30.6 [22.1-39.6] mu g/ml; p<0.01). Survival analysis revealed that HRG levels were associated with mortality (hazard ratio 0.79, p<0.01), and the Harrell C-index (predictive power) for HRG was 0.90. These results suggested that HRG could be a novel prognostic biomarker for sepsis

    Cellular Injury of Cardiomyocytes during Hepatocyte Growth Factor Gene Transfection with Ultrasound-Triggered Bubble Liposome Destruction

    Get PDF
    We transfected naked HGF plasmid DNA into cultured cardiomyocytes using a sonoporation method consisting of ultrasound-triggered bubble liposome destruction. We examined the effects on transfection efficiency of three concentrations of bubble liposome (1 × 106, 1 × 107, 1 × 108/mL), three concentrations of HGF DNA (60, 120, 180 μg/mL), two insonification times (30, 60 sec), and three incubation times (15, 60, 120 min). We found that low concentrations of bubble liposome and low concentrations of DNA provided the largest amount of the HGF protein expression by the sonoporated cardiomyocytes. Variation of insonification and incubation times did not affect the amount of product. Following insonification, cardiomyocytes showed cellular injury, as determined by a dye exclusion test. The extent of injury was most severe with the highest concentration of bubble liposome. In conclusion, there are some trade-offs between gene transfection efficiency and cellular injury using ultrasound-triggered bubble liposome destruction as a method for gene transfection

    Effectiveness of PNAM on nasal form

    Get PDF
    Objectives: To evaluate the effectiveness of pre-surgical nasoalveolar molding (PNAM) in patients with unilateral cleft lip nasal deformities. Methods: This was a retrospective study involving 29 patients with unilateral cleft lip and palate defects, of whom 13 were treated with palatal devices with nasal stents (PNAM group) and 16 were treated with palatal devices without nasal stents or surgical tapes (control group). Submental oblique photographs and orthodontic models were longitudinally obtained at the initial visit (T1) and immediately before (T2) and after cheiloplasty (T3). Asymmetry of the external nose, degree of columellar shifting, nasal tip/ala nose ratio, nasal base angle, interalveolar gap, and the sagittal difference in the alveolar gap were measured. The study was conducted in the Orthodontic Clinic at Tokushima University Hospital, Tokushima, Japan between 1997 and 2012. Results: At T1, there were no significant intergroup differences in the first 4 asymmetry parameters. At T2, the PNAM group showed a significant improvement in all values compared to the control group. At T3, the PNAM group showed significant improvement in nasal asymmetry and columellar shifting. Model analysis showed significantly greater changes in the inter-alveolar gap and the sagittal difference of the alveolar cleft gap from T1 to T2 in the PNAM group. Conclusion: The use of PNAM is indispensable for pre-surgical orthodontic treatment at the early postnatal age

    Urinary adiponectin in DKD

    Get PDF
    Aims: Since diabetes-associated kidney complication changes from diabetic nephropathy to diabetic kidney disease (DKD), more suitable biomarkers than urinary albumin are required. It has been hypothesized that urinary adiponectin (u-ADPN) is associated with the progression of DKD. We therefore evaluated the effectiveness of u-ADPN in predicting the decline of the renal function in patients with diabetes prior to end-stage renal disease. Methods: An ultrasensitive immune complex transfer enzyme immunoassay (ICT-EIA) was used to measure total and high molecular weight (HMW) adiponectin separately. We evaluated the relationships between the creatinine-adjusted urinary total-ADPN and HMW-ADPN, albumin (UACR) and liver-type fatty acid binding protein (L-FABP) at baseline and the 2-year change of the estimated glomerular filtration rate (ΔeGFR). Results: This 2-year prospective observational study included 201 patients with diabetes. These patients were divided into three groups according to their ΔeGFR: ≤-10 ml/min/1.73m2, >-10 and ≤0 ml/min/1.73m2, and >0 ml/min/1.73m2. Jonckheere-Terpstra test showed that lower ΔeGFR was associated with higher u-HMW-ADPN (p = 0.045). In logistic regression analysis, u-HMW-ADPN was associated with ΔeGFR after adjusted age, sex, and basal eGFR. Conclusion: Urinary HMW-ADPN could predict a declining renal function in patients with diabetes

    Basal insulin ratio of type 1 diabetes

    Get PDF
    Aims/Introduction: To investigate the basal insulin requirement in patients with type 1 diabetes who are on multiple daily injections (MDI) and to assess the patient characteristics that affect the percent of total daily basal insulin dose to the total daily insulin dose (%TBD/TDD). Materials and Methods: The subjects of this study were 67 inpatients with type 1 diabetes who were served diabetic meals of 25–30 kcal/kg standard body weight during several weeks of hospitalization. The basal insulin requirement was adjusted to keep the blood glucose level from bedtime to before breakfast within a 30 mg/dL difference. The bolus insulin dose before the meal was adjusted to keep the blood glucose level below 140 and 200 mg/dL before and 2 h after each meal, respectively. The total daily insulin dose (TDD), the percent of total daily basal insulin dose (TBD) to TDD (%TBD/TDD), and clinical characteristics were collected. Results: The median (Q1, Q3) of TDD was 33.0 (26.0, 49.0) units, and the %TBD/TDD was 24.1 ± 9.8%. The %TBD/TDD was positively correlated with the body mass index (BMI) and negatively correlated with the age at the onset and at the examination according to a univariate analysis. However, the %TBD/TDD was dependent on the BMI (β = 0.340, P = 0.004) and the age at examination (β = −0.288, P = 0.012) according to the multiple regression analysis. Conclusions: The average %TBD/TDD in patients with type 1 diabetes on MDI was approximately 24% under inpatient conditions. The basal insulin requirement was dependent on the BMI and the age at examination
    corecore