2 research outputs found
Effect of circulating elements on the dynamic reduction swelling behaviour of olivine and acid Iron ore pellets under simulated blast furnace shaft conditions
Abstract
Sulphur and alkalis in the blast furnace gas have been associated affecting the reduction swelling behaviour of iron ore pellets. A tube furnace was used in this study to examine the dynamic reduction swelling behaviour of olivine and acid pellets in CO–CO₂–N₂ atmosphere with sulphur and potassium in gaseous phases up to 1100°C simulating the conditions in the blast furnace shaft.
No abnormal swelling was detected in sulphur or potassium containing CO–CO₂–N₂ atmospheres during dynamic reduction. Instead, sulphur in the reducing atmosphere was associated with pellet contraction and FeO–FeS melt formation which became more dominant with increasing sulphur partial pressures. In the extreme case, having a maximum of 1.0 vol-% S₂ gas in the reducing atmosphere, the reduction reaction of wüstite to metallic iron was hindered. The formation of FeO–FeS liquid phase extends the cohesive zone towards the blast furnace top and lower temperatures and decreases the gas permeability. Furthermore, large amounts of potassium in the reducing atmosphere (max. 0.03 vol-%) led to swelling and cracking in the olivine pellets still remaining in the range of normal swelling
Dynamic and isothermal reduction swelling behaviour of olivine and acid Iron ore pellets under simulated blast furnace shaft conditions
Abstract
Pellet swelling has been widely studied, being simultaneous with reduction reactions and common in the operation of blast furnaces. A tube furnace equipped with a camera recording system was used here to study the dynamic and isothermal reduction swelling behaviour of olivine and acid pellets under simulated BF shaft conditions. The olivine pellets were magnetically separated into three fractions, containing low, medium and high amounts of magnetite in the core. The divalent iron (FeO) content of these fractions was 0.1 wt-%, 0.2 wt-% and 2.9 wt-%, respectively. Pellets with a large magnetite nucleus were observed to encompass numerous cracks, which was reflected in a poor LTD test value, while SiOâ‚‚-rich reference pellets with a different slag chemistry had more restrained swelling and cracking behaviour in dynamic reduction. Swelling in the olivine pellets was associated with cracking at the boundary between the original magnetite nucleus and the hematite shell.
The dynamic reduction swelling test results showed lower reduction swelling indices (max 17% in volume) than under isothermal conditions (max 51% in volume), in which case the pellets were suddenly exposed to a strongly reducing atmosphere. It is thus suggested that the reduction swelling behaviour of iron ore pellets should preferably be studied dynamically under simulated blast furnace conditions in order to achieve a realistic understanding of their swelling behaviour in a blast furnace