35 research outputs found

    Luminescence Mechanisms in Quaternary Al\u3csub\u3ex\u3c/sub\u3eIn\u3csub\u3ey\u3c/sub\u3eGa\u3csub\u3e1-x-y\u3c/sub\u3eN Materials

    Get PDF
    Low-temperature photoluminescence investigations have been carried out in the quaternary AlInGaN epilayers and AlInGaN/AlInGaN multiple quantum wells (MQWs) grown by pulsedmetalorganic chemical-vapor deposition (PMOCVD). With increasing excitation power density, the emission peaks in both AlInGaN epilayers and MQWs show a strong blueshift and theirlinewidths increase. The luminescence of the samples grown by PMOCVD is attributed to recombination of carriers/excitons localized at band-tail states. We also demonstrate theluminescence properties of AlInGaN and AlGaN materials grown by a pulsed atomic-layerepitaxy and conventional MOCVD, respectively

    Two Mechanisms of Blueshift of Edge Emission in InGaN-Based Epilayers and Multiple Quantum Wells

    Get PDF
    We present the results of a comparative photoluminescence(PL) study of GaN and InGaN-based epilayers, and InGaN/GaN multiple quantum wells(MQWs). Room-temperature PL spectra were measured for a very broad range of optical excitation from 10 mW/cm2 up to 1 MW/cm2. In contrast to GaN epilayers, all In-containing samples exhibited an excitation-induced blueshift of the peak emission. In addition, the blueshift of the emission in the InGaN epilayers with the same composition as the quantum well was significantly smaller. The comparison of the blueshift in the “bulk” InGaN and in the MQWs allowed us to separate two different mechanisms responsible for this effect: (i) filling of the localized states in In-rich areas and (ii) screening of the polarizationelectric field in strained MQW structures

    Pulsed Atomic Layer Epitaxy of Quaternary AlInGaN Layers

    Get PDF
    In this letter, we report on a material deposition scheme for quaternary AlxInyGa1−x–yN layers using a pulsed atomic layer epitaxy (PALE) technique. The PALE approach allows accurate control of the quaternary layer composition and thickness by simply changing the number of aluminum,indium, and gallium pulses in a unit cell and the number of unit cell repeats. Using PALE, AlInGaN layers with Al mole fractions in excess of 40% and strong room-temperature photoluminescence peaks at 280 nm can easily be grown even at temperatures lower than 800 °C

    Characterization of Optical and Photoelectrical Properties of ZnO Crystals

    Get PDF
    We characterized optical and photoelectrical properties of undoped and Ga-doped ZnO layers differently grown on sapphire substrates by using complementary optical methods. Different stimulated emission threshold values for ZnO epitaxial layers grown by pulsed laser deposition and MBE methods were attributed to crystalline quality of the layers and the growth method used. Different carrier lifetimes in various ZnO epitaxial layers are explained by defect-related and intrinsic mechanisms of recombination

    Localization of Carriers and Polarization Effects in Quaternary AlInGaN Multiple Quantum Wells

    Get PDF
    We report on observing a long-wavelength band in low-temperature photoluminescence(PL)spectrum of quaternary Al0.22In0.02Ga0.76N/Al0.38In0.01Ga0.61N multiple quantum wells(MQWs), which were grown over sapphire substrates by a pulsed atomic-layer epitaxy technique. By comparing the excitation-power density and temperature dependence of the PLspectra of MQWs and bulk quaternary AlInGaN layers, we show this emission band to arise from the carrier and/or exciton localization at the quantum well interface disorders. PL data for other radiative transitions in MQWs indicate that excitation-dependent spectra position is determined by screening of the built-in electric field

    Low-Temperature Operation of AlFaN Single-Quantum-Well Light-Emitting Diodes with Deep Ultraviolet Emission at 285 nm

    Get PDF
    We present a study of the electrical and optical characteristics of 285 nm emission deep ultraviolet light-emitting diodes(LED) at temperatures from 10 to 300 K. At low bias, our data show the tunneling carrier transport to be the dominant conduction mechanism. The room-temperature performance is shown to be limited mostly by poor electron confinement in the active region and a pronounced deep level assisted recombination but not by the hole injection into the active region. At temperatures below 100 K, the electroluminescence peak intensity increases by more than one order of magnitude indicating that with a proper device design and improved material quality, milliwatt power 285 nm LED are viable

    Time-Resolved Photoluminescence of Quaternary AlInGaN-Based Multiple Quantum Wells

    Get PDF
    Time-resolvedphotoluminescence(PL)dynamics has been studied in AlInGaN/AlInGaN multiple quantum wells(MQWs) grown by a pulsed metalorganic chemical vapor deposition (PMOCVD) procedure. The PL decay kinetics was found to be sensitive to the emission energy and temperature. The PL decay time increases with decreasing emission energy, which is a characteristic of localized carrier/exciton recombination due to alloy fluctuations. Its temperature dependence shows radiative recombination to be the dominant process at low temperatures, indicating a high quality of PMOCVD grown quaternary AlInGaN MQWs and establishing them as promising structures for the active region of deep ultraviolet light emitting diodes

    GaN Homoepitaxy on Freestanding (11̄00) Oriented GaN Substrates

    Get PDF
    We report homoepitaxialGaNgrowth on freestanding (11̄00) oriented (M-plane GaN) substrates using low-pressure metalorganic chemical vapor deposition.Scanning electron microscopy,atomic-force microscopy, and photoluminescence were used to study the influence of growth conditions such as the V/III molar ratio and temperature on the surface morphology and optical properties of the epilayers. Optimized growth conditions led to high quality (11̄00) oriented GaN epilayers with a smooth surface morphology and strong band-edge emission. These layers also exhibited strong room temperature stimulated emission under high intensity pulsed optical pumping. Since for III-N materials the (11̄00) crystal orientation is free from piezoelectric or spontaneous polarization electric fields, our work forms the basis for developing high performance III-N optoelectronic devices

    Near-Band-Edge Photoluminescence of Wurtzite-Type AlN

    Get PDF
    Temperature-dependentphotoluminescence(PL)measurements were performed for A-plane and C-plane bulk AlN single crystals and epitaxial layers on sapphire. A strong near-band-edge (NBE) emission and deep-level luminescence were observed. At low excitations, the emission spectra are dominated by free and bound excitonic transitions and their LO-phonon replicas. At high excitations, the broadening and redshift of the NBE band is attributed to dense electron–hole plasma formation. The PL spectra differences of bulk single crystals and epilayers is explained by the electron–hole plasma expansion peculiarities

    Polarization Effects in Photoluminescence of C- and M-Plane GaN/AlGaN Multiple Quantum Wells

    Get PDF
    Polarizationeffects have been studied in GaN/AlGaN multiple quantum wells(MQWs) with different c-axis orientation by means of excitation-dependent photoluminescence(PL) analysis. Quantum structures were grown on [0001]-oriented sapphire substrates (C plane) and single-crystalline [11̄00]-oriented freestanding GaN (M plane) using the metalorganic chemical vapor deposition technique. Strong PL spectrum line blueshifts (up to 140 meV) which are correlated with the excitation intensity have been obtained for C-plane MQWs, whereas no shift has been observed for M-plane MQWs.Theoretical calculations and comparison with the PL data confirm that the built-in electric field for C-plane structures is much stronger than the field present for M-plane MQWs. In the former case, the excitation-induced blueshift of the PL line is due to the screening of the built-in electric field by photoinjected carriers, which is consistent with the field strength of 1.23 MV/cm in the absence of excitation
    corecore