69 research outputs found

    Theoretical Model of Droplet Wettability on a Low-Surface-Energy Solid under the Influence of Gravity

    Get PDF
    The wettability of droplets on a low surface energy solid is evaluated experimentally and theoretically. Water-ethanol binary mixture drops of several volumes are used. In the experiment, the droplet radius, height, and contact angle are measured. Analytical equations are derived that incorporate the effect of gravity for the relationships between the droplet radius and height, radius and contact angle, and radius and liquid surface energy. All the analytical equations display good agreement with the experimental data. It is found that the fundamental wetting behavior of the droplet on the low surface energy solid can be predicted by our model which gives geometrical information of the droplet such as the contact angle, droplet radius, and height from physical values of liquid and solid

    CFD-based Evaluation of Interfacial Flows

    Get PDF

    AJK2011-08001 INVESTIGATION OF ROD VIBRATIONS IN DROPLET TWO-PHASE FLOWS

    Get PDF
    ABSTRACT Flow-induced vibrations are important problems in nuclear power plants from the view point of reactor safety. In the investigations of these vibrations especially those induced by two-phase flows, a numerical simulation plays a significant role, so it is necessary to obtain the experimental datasets that can validate the results of the numerical simulation. This paper deals with the experimental data of one-end-supported rod vibration, and focuses on the differences between the rod vibrations induced by single-phase air flows and those induced by droplet two-phase flows. In the experiments, the displacement of the non-supported end of the test rod was visualized by the high speed camera with high spatial and temporal resolutions, namely 9.5 µm and 500 µsec. Using an image analyzing software, the rod vibration displacements were measured by the motion tracking method. The curved surface of the rod was observed by another high speed camera and the relationship between the rod vibrations and the wet condition on the surface of the rod was investigated. In addition, the vibrations measured by the strain gages and those by the high speed camera were compared to discuss the differences in these two ways of the measurements

    Direct numerical simulation of a high-Froude-number turbulent open-channel flow

    Get PDF
    In this study, we successfully conducted a direct numerical simulation of a high-Fr turbulent open-channel flow at a Froude number of 1.8 and a Reynolds number of 2325 based on bulk velocity, gravitational acceleration, water depth, and kinetic viscosity, using the multi-interface advection and reconstruction solver (MARS). We confirmed that typical wall-bounded turbulent structures were observed in this high-Fr open-channel flow. On the other hand, near free-surface, surface deformations are constituted of large-scale gentle bumpy waves with the maximum wave height corresponding to approximately 4% of the water depth and small-scale isotropic waves on the large-scale waves. The large-scale waves would generate the high-speed streaky structures near the free-surface and the scale of the small waves would be equivalent to the near free-surface turbulent kinetic energy. Near the free-surface, wall-normal turbulent intensity and energy-dissipation rates increase toward the free-surface, and the tendencies of turbulent statistical quantities near the free-surface are in good agreement with the experimental measurements obtained using a laser Doppler anemometer (LDA) (Nakayama and Nezu, "Bursts near the free-surface in open-channel flows and their relationships with turbulence structures, " J. Hydraulic, Coastal and Environmental Eng. JSCE 635/II, 31 1999). As well as the rigid-lid turbulent open-channel flow, turbulent intensity distribution from the vertical component to the streamwise one is predominant beneath the free-surface

    Direct Numerical Simulation and Visualization of Subcooled Pool Boiling

    Get PDF
    A direct numerical simulation of the boiling phenomena is one of the promising approaches in order to clarify their heat transfer characteristics and discuss the mechanism. During these decades, many DNS procedures have been developed according to the recent high performance computers and computational technologies. In this paper, the state of the art of direct numerical simulation of the pool boiling phenomena during mostly two decades is briefly summarized at first, and then the nonempirical boiling and condensation model proposed by the authors is introduced into the MARS (MultiInterface Advection and Reconstruction Solver developed by the authors). On the other hand, in order to clarify the boiling bubble behaviors under the subcooled conditions, the subcooled pool boiling experiments are also performed by using a high speed and high spatial resolution camera with a highly magnified telescope. Resulting from the numerical simulations of the subcooled pool boiling phenomena, the numerical results obtained by the MARS are validated by being compared to the experimental ones and the existing analytical solutions. The numerical results regarding the time evolution of the boiling bubble departure process under the subcooled conditions show a very good agreement with the experimental results. In conclusion, it can be said that the proposed nonempirical boiling and condensation model combined with the MARS has been validated

    Macroscopic wettability based on an interfacial jump condition

    Get PDF
    Young's equation, describing an interfacial equilibrium condition of a liquid droplet on a smooth solid surface, raises issues concerning the existence of a sine term which has not yet been resolved theoretically and continues to be discussed to the present day. From a thermodynamics viewpoint, the equilibrium condition arises by minimizing the total free energy of the system while intensive parameters are kept constant. In the derivation, variations in the virtual work in both horizontal and vertical directions of the droplet on the smooth solid are considered. From a hydrodynamics viewpoint, there is a momentum jump condition at the gas-liquid interface that is derived based on a mechanical balance. Using standard mathematical procedures such as Stokes' theorem and differential geometry, a test volume is considered across the interface between two continuous phases from which the jump condition is derived. In the present paper, Young's equation is revisited from the point of view of the momentum jump condition at the two-phase interface and a modified Young's equation is derived. The analytical solution derived from the modified Young's equation is then used to compare theory with experimental data. The line tension and contact angle for a lens droplet are also discussed on the basis of this model
    corecore