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A B S T R A C T

To investigate Magneto-Hydro-Dynamics (MHD) effects on structures of turbulence near a free surface, Direct
Numerical Simulations (DNS) of free surface turbulent flows imposed on a wall-normal magnetic field were
conducted under the friction Reynolds number 400 with the Hartmann number 0, 10, 14, and 16. As the results,
we can succeed to obtain the all information to develop and validate the RANS model such as a k-epsilon model.

Near free surface, the MHD dissipation term of the turbulent kinetic energy shows the dominant contribution,
but one of the turbulent dissipation rate gives little influence for the transport process. Furthermore, the validity
of the modeling of MHD effects on the free-surface proposed by Smolentsev et al., Int. J. Eng. Sci. (2002) was
shown by means of the present DNS database.

1. Introduction

Free-surface turbulent flows under the magnetic forces are very
often found in nuclear fusion reactor engineering fields [1–5] etc. Due
to the Magnet-Hydro-Dynamic (MHD) effects, free-surface turbulent
structures are modulated into the laminarization [6], as the results the
turbulent heat transfer accoss the free-surface is also suppressed [7].
Therefore, to understand the free-surface tubulent structures of the li-
quid metal flows under magnetic fileds is of paticular importance for
modeling of turbulence such as the Reynolds averaged Navier-Stokes
simulation (RANS).

Free-surface turbulent flows are divided into two types of flow re-
gimes. One is the low-Froude number flow, in which the Froude number
[Fr=Ub/(gh)1/2, where Ub is bulk mean velocity, g is gravitational
acceleration, and h is flow depth] is less than 0.5. In low-Fr range,
surface deformation is small, hence the free-surface can be regarded as
a rigid-lid free-surface. On the other hand, in high-Fr flow (Fr > 1.0),
free-surface normal turbulent-intensity has a tendency to increase, and
surface deformation effects no longer be neglected. To understand the
free-surface turbulent structures, direct numerical simulation (DNS) of
a rigid-lid free-surface turbulent flow was initially conducted by Lam
and Banergee [8]. Handler et al. [9] also conducted DNS of an open-
channel flow and obtained turbulent statistics such as the budgets of
Reynolds stress and turbulent dissipation-rate near the rigid-lid free-
surface. For high-Fr flow, Yamamoto and Kunugi [10] was conducted a
DNS of the free-surface turbulent flow at Fr= 1.8. As stated above,

free-surface turbulent structures under non-MHD fields are well-un-
derstood until now.

On the other hand, in our knowledge, Satake et al. [6] only suc-
ceeded to obtained the near free surface turbulent statistics such as the
budgets of turbulent kinetic energy (k) under the MHD effects. How-
ever, the budgets of turbulent dissipation rate (ε), which is the one of
key factors from the viewpoints of turbulence modeling such as the low-
Reynolds (Re) number k-epsilon (k-ε) model, have not yet been estab-
lished. In fact, the prediction accuracy of the low-Re k-ε model is
strongly depended on the modeling accuracy of the transport equation
of ε in channel flows under the MHD effects [11,12].

In this study, we established the DNS database of all information to
develop the low-Re k-ε model for the free-surface turbulent flows im-
posed on the wall-normal magnetic field, and investigated MHD effects
on structures of turbulence near a free surface.

2. Overview of the DNS database

2.1. Target flow fields

The target flow is an incompressible MHD turbulent flow at a low
magnetic Reynolds number.in the previous DNS study [6]. In this pre-
vious study [6], the effects of the magnetic fields for streamwise or
spanwise directions on fundamental turbulent statistics are discussed.
With regards to wall-normal magnetic fields, the most remarkable ef-
fects on the dissipation length scale at the free surface are appeared
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[13]. The present flow is assumed to be a fully-developed rigid-rid
open-channel flow in the presence of a wall-normal uniform magnetic
field. Thermal properties of the present liquid-metal flows are used
them of lithium at 500 °C. The flow geometry and coordinate system are
shown in Fig. 1, where B0 is the wall-normal uniform magnetic field, h
is the flow depth, and Lx, Ly, Lz are the streamwise (x), wall-normal (y),
and spanwise (z) computational lengths, respectively.

2.2. Governing equations and numerical procedures

The continuity, and the momentum equations with an electric field
described using the electrical potential approach at a low–magnetic
Reynolds number, were solved using a hybrid Fourier spectral method
and a second-order central differencing method. To remove the aliasing
errors derived from nonlinear terms, the phase-shift method was ap-
plied. The time integration methods for the governing equations were
as follows: the third-order Runge–Kutta scheme was used for the con-
vection terms, the Crank–Nicolson scheme was used for the viscous
terms, and the Euler implicit scheme was used for the pressure terms.
The Helmholtz equation for the viscous terms and the Poisson equations
for the pressure and electrical potential were solved using a tri-diagonal
matrix algorithm in Fourier space.

For the velocity fields, nonslip and free-slip condition was imposed
on the bottom-wall and free surface respectively, and periodic condi-
tion was used for the stream and spanwise directions. For the electric
potential, non-conducting condition was applied on the bottom-wall
and the free surface, and a periodic condition was also imposed on the
stream and spanwise directions. The spanwise total electric current was
maintained at zero [14].

2.3. Numerical conditions

The numerical conditions for the present DNS are shown in Table 1,
where the superscript+ denotes the non-dimensional quantities nor-
malized by friction velocity (uτ) and kinematic viscosity (ν). In our

computations, the friction Reynolds number, Reτ= uτ h/ν, was kept
constant at 400. The Hartmann number, Ha= B0 h (σ/ρν)1/2, where σ is
the electrical conductivity and ρ is the density, was changed from 0 to
16. The bulk Reynolds numbers (Reb=Ubh/ν, where Ub is the
streamwise bulk velocity) were approximately 8000.

The computations were performed on a Fujitsu FX100 and a NEC
SX-ACE supercomputer systems at National Institute for Fusion Science
and Tohoku University. To obtain the statistical values, the time in-
tegration was conducted during 8000 in the normalized time units
based on friction velocity and kinematic viscosity for all cases.

2.4. Reynolds averaged momentum equation

The Reynolds Averaged equation of the Navier-Stokes equation in
this study is written as
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The total shear stress is the function of y+ and consists of the vis-
cous shear stress, the Reynolds stress and the magnetic stress. In k-ε
model [15], Reynolds stress is related to the mean rate of strain (∂U/∂y)
via a turbulent viscosity (νT), i.e.
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Here, Cμ is a model constant and the standard value is 0.09 [15]. To
obtain the Reynolds stress in right side of Eq. (2), turbulent kinetic
energy (k) and turbulent dissipation rate (ε) are required.

2.5. Transport equation of turbulent kinetic energy and energy dissipation
rate

The transport equations of turbulent kinetic energy (k) and turbu-
lent dissipation rate (ε) for the fully-developed open-channel flow
under the wall-normal magnetic field, are given by Eqs. (3) and (4),
respectively.
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Fig. 1. Flow geometry and coordinate system.

Table 1
Numerical conditions.

Reτ Ha domain Lx, Ly,
Lz

grid number Nx,
Ny, Nz

resolution
Δx+,Δy+,Δz+

400 0, 10, 14,
16

12.8 h, h, 6.4 h 384, 192, 384 13.3, 0.3–4.3, 6.7

Reτ= uτh/ν: friction Reynolds number, uτ: friction velocity, h: flow depth, ν:
kinematic viscosity, Ha= B0h(σ/ρν)1/2, Hartmann number, B0: wall-normal
magnetic flux density, σ: electric conductivity, Lx (Nx, Δx), Ly (Ny, Δy), Lz (Nz,

Δz): computational domain (grid number, resolution) for stream (x), vertical
(y), and spanwise (z) directions, respectively.
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Here, D/Dt is the substantial derivative, ui and xi are the streamwise
(u1= u, x1= x), vertical (u2= v, x2= y,), and spanwise (u3=w,
x3= z,) turbulent velocities and directions, respectively. U is the
streamwise mean velocity, p is the pressure, ϕ is the electric potential,
and over bar (—) denotes a time average.

The transport Eq. (3) of the turbulent kinetic energy is classified into
three terms for types of their contributions; the production term (Pk),
the diffusion terms comprised of the turbulent diffusion (Tk), the vis-
cous diffusion (Dk) and the pressure diffusion (Πk), and the dissipation
terms comprised of the viscous dissipation (ε) and the magnetic dis-
sipation (SkM1, SkM2).

The transport Eq. (4) of the turbulent energy dissipation rate is also
classified into three terms. The production terms comprise the mixed
production (Pε1), the production by mean velocity (Pε2), the gradient
production (Pε3), and the turbulent production (Pε4). The diffusion
terms comprise the turbulent diffusion (Tε), the pressure diffusion (Πε),
and the viscous diffusion (Dε). The destruction (dissipation) terms
comprise the viscous destruction rate (γ) and the magnetic destruction
terms (SεM1, SεM2). Two types of MHD terms both in Eqs. (3) and (4)
were considered as one dissipative source term. In short, the Lorentz
force always acted as the dissipative contribution to the turbulent en-
ergy dissipation rate [16]. The main objective of the present study is to
obtain the DNS database in Eqs. (1)–(4) as the reference data in the
turbulence modeling.

3. Results and discussion

3.1. MHD effects of mean momentum equation

Fig. 2 show the Reynolds Averaged equation of the Navier-Stokes
Eq. (1) for Ha=0, 14, and 16, respectively. With increasing Hartmann
number, the magnetic stress becomes larger which is known well as the
MHD pressure loss and the Reynolds stress is reduced. In case of
Ha= 14, the Reynolds stress and the magnetic stress show the same
level, and the magnetic stress exceeds the Reynolds stress over all wall-
normal heights in case of Ha=16. Accordingly, the reduction of the
Reynolds shear stress changes the turbulent flow into the laminar flow
in case of Ha≥ 16.

The model constant (Cμ) of the turbulent viscosity is evaluated in at
the log-region of the mean velocity profile as [17]

= −C uv
k

.μ
2

(5)

The Hartman number effect on Eq. (5) is shown in Fig. 3. Cμ shows
the almost same value as the standard value 0.09 except for Ha= 16.

The dissipation length (l) can be estimated as,

≈l k
ε

.
3/2

(6)

Fig. 4 shows the Hartmann number effects on the dissipation length
scale at the free surface normalized by the one of Ha= 0. The only k-ε
model under the free surface MHD flows was proposed by Smolentsev
et al. [13]. In this model [13], MHD effects on the free surface turbulent
statistics are considered as the decrease of the dissipation length scale
(l) at the free surface as shown in Fig. 4. The present results for Ha=10
and 14 show good agreement with the model [13]. The changes of the
model constant and the dissipation length at the free surface in case of

Fig. 2. The balance of the mean momentum equation.

Fig. 3. Ha effects of model constant: Cμ.
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Ha=16 are caused from the remarkable laminarization as shown in
Fig. 2(3).

3.2. MHD effects on the transport of turbulent kinetic energy and dissipation
rate

Near free surface, the budgets of the turbulent kinetic energy (k) in
cases of Ha= 0 and 16 are shown in Fig. 5. All terms in Eq. (3) were
normalized using uτ4/ν. In case of Ha=0, near free surface turbulent
kinetic energy was supplied through the pressure diffusion (Πk) and the
turbulent diffusion (Tk), and was lost through the viscous dissipation (ε)
and the viscous diffusion (Dk). In case of Ha= 16, turbulent kinetic
energy is gained through the pressure diffusion (Πk) and is lost through

the viscous dissipation (ε) and the magnetic dissipation (SkM1+ SkM2).
Since the pressure diffusion term (Πk) is usually ignored or implicitly
included in the Tk term, the underestimation of k is concerned near free
surface. Besides, the quantitative prediction of the MHD effects is re-
quired because the magnetic dissipation term plays the primary role at
the vicinity of the free surface.

Fig. 6 shows the budgets of the turbulent energy dissipation (ε) rate
in cases of Ha=0 and 16. All terms in Eq. (4) were normalized using
uτ6/ν2. In case of Ha=0, the supply from the viscous diffusion (Dε) is
dominant, and balances with the loss from the viscous destruction rate
(γ). It is surprising that the almost same transport process of ε near free
surface, is confirmed in case of Ha=16. The contribution of the
magnetic dissipation is relatively small, but the turbulent production
(Pε4) has the significant value both in cases of Ha= 0 and 16. There-
fore, the generally modeling used Pε4 − γ in ε - equation [18] can be
useful in the MHD free surface flows. Finally, the mechanism of tur-
bulent energy and dissipation rate transport near the free surface is
summarized in Fig. 7.

3.3. A priori test of MHD dissipative terms

The MHD dissipative models in k- and ε-equations are proposed by
Ji & Gradner [19], Kenjeres & Hanjalic [16], and Smolentsev et al. [13].
The model proposed by Smolentsev et al. [13] only has been studied the
applicability for the free surface. This model expression is as follows;

Fig. 4. Ha effects of the dissipation length scale at the free-surface.

Fig. 5. Ha effects on budget of the turbulent kinetic energy, near free-surface.

Fig. 6. Ha effects on budget of the turbulent dissipation rate, near free surface.
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Fig. 8 shows the a priori test of the MHD dissipative model. The
model by Smolentsev et al. [13] can predict DNS results quantitatively.

4. Conclusions

In this study, we succeeded in establishing DNS database of turbu-
lent free surface flows imposed on a wall-normal uniform magnetic
field. Near free surface, the importance of modeling in the pressure
diffusion and the MHD dissipation terms of the turbulent kinetic energy
is revealed on a k-ε model. Although the dissipation length shows the
decreasing tendency with increasing of Ha, the transport process of the
turbulent dissipation rate near the free surface has the almost same
mechanism with or without MHD effects. Present DNS results show the

Fig. 7. The mechanism of turbulent energy and dissipation transport, near the free surface.
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validity of the modeling of MHD effects on the free surface proposed by
Smolentsev et al., Int. J. Eng. Sci. (2002).
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