52 research outputs found

    Liver-specific γ-glutamyl carboxylase-deficient mice display bleeding diathesis and short life span

    Get PDF
    Liver-Specific γ-Glutamyl Carboxylase-Deficient Mice Display Bleeding Diathesis and Short Life Span. Azuma K, Tsukui T, Ikeda K, Shiba S, Nakagawa K, et al. PLOS ONE. 2014. 9(2) doi:10.1371/journal.pone.008864

    miR-378a-3p modulates tamoxifen sensitivity in breast cancer MCF-7 cells through targeting GOLT1A

    Get PDF
    Breast cancer is a hormone-dependent cancer and usually treated with endocrine therapy using aromatase inhibitors or anti-estrogens such as tamoxifen. A majority of breast cancer, however, will often fail to respond to endocrine therapy. In the present study, we explored miRNAs associated with endocrine therapy resistance in breast cancer. High-throughput miRNA sequencing was performed using RNAs prepared from breast cancer MCF-7 cells and their derivative clones as endocrine therapy resistant cell models, including tamoxifen-resistant (TamR) and long-term estrogen-deprived (LTED) MCF-7 cells. Notably, miR-21 was the most abundantly expressed miRNA in MCF-7 cells and overexpressed in TamR and LTED cells. We found that miR-378a-3p expression was downregulated in TamR and LTED cells as well as in clinical breast cancer tissues. Additionally, lower expression levels of miR-378a-3p were associated with poor prognosis for tamoxifen-treated patients with breast cancer. GOLT1A was selected as one of the miR-378a-3p candidate target genes by in silico analysis. GOLT1A was overexpressed in breast cancer specimens and GOLT1A-specific siRNAs inhibited the growth of TamR cells. Low GOLT1A levels were correlated with better survival in patients with breast cancer. These results suggest that miR-378a-3p-dependent GOLT1A expression contributes to the mechanisms underlying breast cancer endocrine resistance

    Application of Prostate Cancer Models for Preclinical Study: Advantages and Limitations of Cell Lines, Patient-Derived Xenografts, and Three-Dimensional Culture of Patient-Derived Cells

    No full text
    Various preclinical models have been developed to clarify the pathophysiology of prostate cancer (PCa). Traditional PCa cell lines from clinical metastatic lesions, as exemplified by DU-145, PC-3, and LNCaP cells, are useful tools to define mechanisms underlying tumorigenesis and drug resistance. Cell line-based experiments, however, have limitations for preclinical studies because those cells are basically adapted to 2-dimensional monolayer culture conditions, in which the majority of primary PCa cells cannot survive. Recent tissue engineering enables generation of PCa patient-derived xenografts (PDXs) from both primary and metastatic lesions. Compared with fresh PCa tissue transplantation in athymic mice, co-injection of PCa tissues with extracellular matrix in highly immunodeficient mice has remarkably improved the success rate of PDX generation. PDX models have advantages to appropriately recapitulate the molecular diversity, cellular heterogeneity, and histology of original patient tumors. In contrast to PDX models, patient-derived organoid and spheroid PCa models in 3-dimensional culture are more feasible tools for in vitro studies for retaining the characteristics of patient tumors. In this article, we review PCa preclinical model cell lines and their sublines, PDXs, and patient-derived organoid and spheroid models. These PCa models will be applied to the development of new strategies for cancer precision medicine

    Roles of Estrogen, Estrogen Receptors, and Estrogen-Related Receptors in Skeletal Muscle: Regulation of Mitochondrial Function

    No full text
    Estrogen is an essential sex steroid hormone that functions primarily in female reproductive system, as well as in a variety of tissues and organs with pleiotropic effects, such as in cardiovascular, nervous, immune, and musculoskeletal systems. Women with low estrogen, as exemplified by those in postmenopause, are therefore prone to suffer from various disorders, i.e., cardiovascular disease, dementia, metabolic syndrome, osteoporosis, sarcopenia, frailty, and so on. Estrogen regulates the expression of its target genes by binding to its cognate receptors, estrogen receptors (ERs) α and β. Notably, the estrogen-related receptors (ERRs) α, β, and γ are originally identified as orphan receptors that share substantial structural homology and common transcriptional targets with ERs. Accumulating evidence suggests that ERs and ERRs play crucial roles in skeletal muscles, such as muscle mass maintenance, muscle exercise physiology, and muscle regeneration. In this article, we review potential regulatory roles of ERs and ERRs in muscle physiology, particularly with regard to mitochondrial function and metabolism

    Roles of Estrogen, Estrogen Receptors, and Estrogen-Related Receptors in Skeletal Muscle: Regulation of Mitochondrial Function

    No full text
    Estrogen is an essential sex steroid hormone that functions primarily in female reproductive system, as well as in a variety of tissues and organs with pleiotropic effects, such as in cardiovascular, nervous, immune, and musculoskeletal systems. Women with low estrogen, as exemplified by those in postmenopause, are therefore prone to suffer from various disorders, i.e., cardiovascular disease, dementia, metabolic syndrome, osteoporosis, sarcopenia, frailty, and so on. Estrogen regulates the expression of its target genes by binding to its cognate receptors, estrogen receptors (ERs) α and β. Notably, the estrogen-related receptors (ERRs) α, β, and γ are originally identified as orphan receptors that share substantial structural homology and common transcriptional targets with ERs. Accumulating evidence suggests that ERs and ERRs play crucial roles in skeletal muscles, such as muscle mass maintenance, muscle exercise physiology, and muscle regeneration. In this article, we review potential regulatory roles of ERs and ERRs in muscle physiology, particularly with regard to mitochondrial function and metabolism

    MicroRNA Library-Based Functional Screening Identified Androgen-Sensitive miR-216a as a Player in Bicalutamide Resistance in Prostate Cancer

    No full text
    Prostate cancer is a major hormone-dependent tumor affecting men, and is often treated by hormone therapy at the primary stages. Despite its initial efficiency, the disease eventually acquires resistance, resulting in the recurrence of castration-resistant prostate cancer. Recent studies suggest that dysregulation of microRNA (miRNA) function is one of the mechanisms underlying hormone therapy resistance. Identification of critical miRNAs involved in endocrine resistance will therefore be important for developing therapeutic targets for prostate cancer. In the present study, we performed an miRNA library screening to identify anti-androgen bicalutamide resistance-related miRNAs in prostate cancer LNCaP cells. Cells were infected with a lentiviral miRNA library and subsequently maintained in media containing either bicalutamide or vehicle for a month. Microarray analysis determined the amounts of individual miRNA precursors and identified 2 retained miRNAs after one-month bicalutamide treatment. Of these, we further characterized miR-216a, because its function in prostate cancer remains unknown. miR-216a could be induced by dihydrotestosterone in LNCaP cells and ectopic expression of miR-216a inhibited bicalutamide-mediated growth suppression of LNCaP cells. Furthermore, a microarray dataset revealed that the expression levels of miR-216a were significantly higher in clinical prostate cancer than in benign samples. These results suggest that functional screening using an miRNA expression library could be useful for identifying novel miRNAs that contribute to bicalutamide resistance in prostate cancer

    Long Intergenic Noncoding RNA OIN1 Promotes Ovarian Cancer Growth by Modulating Apoptosis-Related Gene Expression

    No full text
    Patients with advanced ovarian cancer usually exhibit high mortality rates, thus more efficient therapeutic strategies are expected to be developed. Recent transcriptomic studies revealed that long intergenic noncoding RNAs (lincRNAs) can be a new class of molecular targets for cancer management, because lincRNAs likely exert tissue-specific activities compared with protein-coding genes or other noncoding RNAs. We here show that an unannotated lincRNA originated from chromosome 10q21 and designated as ovarian cancer long intergenic noncoding RNA 1 (OIN1), is often overexpressed in ovarian cancer tissues compared with normal ovaries as analyzed by RNA sequencing. OIN1 silencing by specific siRNAs significantly exerted proliferation inhibition and enhanced apoptosis in ovarian cancer cells. Notably, RNA sequencing showed that OIN1 expression was negatively correlated with the expression of apoptosis-related genes ras association domain family member 5 (RASSF5) and adenosine A1 receptor (ADORA1), which were upregulated by OIN1 knockdown in ovarian cancer cells. OIN1-specifc siRNA injection was effective to suppress in vivo tumor growth of ovarian cancer cells inoculated in immunodeficient mice. Taken together, OIN1 could function as a tumor-promoting lincRNA in ovarian cancer through modulating apoptosis and will be a potential molecular target for ovarian cancer management
    • …
    corecore