24 research outputs found
Extended Self-similarity in Kinetic Surface Roughening
We show from numerical simulations that a limited mobility solid-on-solid
model of kinetically rough surface growth exhibits extended self-similarity
analogous to that found in fluid turbulence. The range over which
scale-independent power-law behavior is observed is significantly enhanced if
two correlation functions of different order, such as those representing two
different moments of the difference in height between two points, are plotted
against each other. This behavior, found in both one and two dimensions,
suggests that the `relative' exponents may be more fundamental than the
`absolute' ones.Comment: 4 pages, 4 postscript figures included (some changes made according
to referees' comments. accepted for publication in PRE Rapid Communication
Counterion adsorption on flexible polyelectrolytes: comparison of theories
Counterion adsorption on a flexible polyelectrolyte chain in a spherical
cavity is considered by taking a "permuted" charge distribution on the chain so
that the "adsorbed" counterions are allowed to move along the backbone. We
compute the degree of ionization by using self-consistent field theory (SCFT)
and compare with the previously developed variational theory. Analysis of
various contributions to the free energy in both theories reveals that the
equilibrium degree of ionization is attained mainly as an interplay of the
adsorption energy of counterions on the backbone, the translational entropy of
the small ions, and their correlated density fluctuations. Degree of ionization
computed from SCFT is significantly lower than that from the variational
formalism. The difference is entirely due to the density fluctuations of the
small ions in the system, which are accounted for in the variational procedure.
When these fluctuations are deliberately suppressed in the truncated
variational procedure, there emerges a remarkable quantitative agreement in the
various contributing factors to the equilibrium degree of ionization, in spite
of the fundamental differences in the approximations and computational
procedures used in these two schemes. Nevertheless, since the significant
effects from density fluctuations of small ions are not captured by the SCFT,
and due to the close agreement between SCFT and the other contributing factors
in the more transparent variational procedure, the latter is a better
computational tool for obtaining the degree of ionization
Recommended from our members
Collapse of Linear Polyelectrolyte Chains in a Poor Solvent: When Does a Collapsing Polyelectrolyte Collect its Counterions?
9352-935
Charge regularization in phase separating polyelectrolyte solutions
Theoretical investigations of phase separation in polyelectrolyte solutions have so far assumed that the effective charge of the polyelectrolyte chains is fixed. The ability of the polyelectrolyte chains to self-regulate their effective charge due to the self-consistent coupling between ionization equilibrium and polymer conformations, depending on the dielectric constant, temperature, and polymer concentration, affects the critical phenomena and phase transitions drastically. By considering salt-free polyelectrolyte solutions, we show that the daughter phases have different polymer charges from that of the mother phase. The critical point is also altered significantly by the charge self-regularization of the polymer chains. This work extends the progress made so far in the theory of phase separation of strong polyelectrolyte solutions to a higher level of understanding by considering chains which can self-regulate their charge