135 research outputs found
Scalability of Genetic Programming and Probabilistic Incremental Program Evolution
This paper discusses scalability of standard genetic programming (GP) and the
probabilistic incremental program evolution (PIPE). To investigate the need for
both effective mixing and linkage learning, two test problems are considered:
ORDER problem, which is rather easy for any recombination-based GP, and TRAP or
the deceptive trap problem, which requires the algorithm to learn interactions
among subsets of terminals. The scalability results show that both GP and PIPE
scale up polynomially with problem size on the simple ORDER problem, but they
both scale up exponentially on the deceptive problem. This indicates that while
standard recombination is sufficient when no interactions need to be
considered, for some problems linkage learning is necessary. These results are
in agreement with the lessons learned in the domain of binary-string genetic
algorithms (GAs). Furthermore, the paper investigates the effects of
introducing utnnecessary and irrelevant primitives on the performance of GP and
PIPE.Comment: Submitted to GECCO-200
Dependency structure matrix, genetic algorithms, and effective recombination
In many different fields, researchers are often confronted by problems arising from complex systems. Simple heuristics or even enumeration works quite well on small and easy problems; however, to efficiently solve large and difficult problems, proper decomposition is the key. In this paper, investigating and analyzing interactions between components of complex systems shed some light on problem decomposition. By recognizing three bare-bones interactions-modularity, hierarchy, and overlap, facet-wise models arc developed to dissect and inspect problem decomposition in the context of genetic algorithms. The proposed genetic algorithm design utilizes a matrix representation of an interaction graph to analyze and explicitly decompose the problem. The results from this paper should benefit research both technically and scientifically. Technically, this paper develops an automated dependency structure matrix clustering technique and utilizes it to design a model-building genetic algorithm that learns and delivers the problem structure. Scientifically, the explicit interaction model describes the problem structure very well and helps researchers gain important insights through the explicitness of the procedure.This work was sponsored by Taiwan National Science Council under grant NSC97-
2218-E-002-020-MY3, U.S. Air Force Office of Scientific Research, Air Force Material
Command, USAF, under grants FA9550-06-1-0370 and FA9550-06-1-0096, U.S. National
Science Foundation under CAREER grant ECS-0547013, ITR grant DMR-03-25939 at
Materials Computation Center, grant ISS-02-09199 at US National Center for Supercomputing Applications, UIUC, and the Portuguese Foundation for Science and Technology
under grants SFRH/BD/16980/2004 and PTDC/EIA/67776/2006
- …