74 research outputs found

    RIPless compressed sensing from anisotropic measurements

    Full text link
    Compressed sensing is the art of reconstructing a sparse vector from its inner products with respect to a small set of randomly chosen measurement vectors. It is usually assumed that the ensemble of measurement vectors is in isotropic position in the sense that the associated covariance matrix is proportional to the identity matrix. In this paper, we establish bounds on the number of required measurements in the anisotropic case, where the ensemble of measurement vectors possesses a non-trivial covariance matrix. Essentially, we find that the required sampling rate grows proportionally to the condition number of the covariance matrix. In contrast to other recent contributions to this problem, our arguments do not rely on any restricted isometry properties (RIP's), but rather on ideas from convex geometry which have been systematically studied in the theory of low-rank matrix recovery. This allows for a simple argument and slightly improved bounds, but may lead to a worse dependency on noise (which we do not consider in the present paper).Comment: 19 pages. To appear in Linear Algebra and its Applications, Special Issue on Sparse Approximate Solution of Linear System

    Variational-Correlations Approach to Quantum Many-body Problems

    Get PDF
    We investigate an approach for studying the ground state of a quantum many-body Hamiltonian that is based on treating the correlation functions as variational parameters. In this approach, the challenge set by the exponentially-large Hilbert space is circumvented by approximating the positivity of the density matrix, order-by-order, in a way that keeps track of a limited set of correlation functions. In particular, the density-matrix description is replaced by a correlation matrix whose dimension is kept linear in system size, to all orders of the approximation. Unlike the conventional variational principle which provides an upper bound on the ground-state energy, in this approach one obtains a lower bound instead. By treating several one-dimensional spin 1/2 Hamiltonians, we demonstrate the ability of this approach to produce long-range correlations, and a ground-state energy that converges to the exact result. Possible extensions, including to higher-excited states are discussed

    Fast and Robust Quantum State Tomography from Few Basis Measurements

    Get PDF
    Quantum state tomography is a powerful but resource-intensive, general solution for numerous quantum information processing tasks. This motivates the design of robust tomography procedures that use relevant resources as sparingly as possible. Important cost factors include the number of state copies and measurement settings, as well as classical postprocessing time and memory. In this work, we present and analyze an online tomography algorithm designed to optimize all the aforementioned resources at the cost of a worse dependence on accuracy. The protocol is the first to give provably optimal performance in terms of rank and dimension for state copies, measurement settings and memory. Classical runtime is also reduced substantially and numerical experiments demonstrate a favorable comparison with other state-of-the-art techniques. Further improvements are possible by executing the algorithm on a quantum computer, giving a quantum speedup for quantum state tomography

    Low rank matrix recovery from rank one measurements

    Full text link
    We study the recovery of Hermitian low rank matrices XCn×nX \in \mathbb{C}^{n \times n} from undersampled measurements via nuclear norm minimization. We consider the particular scenario where the measurements are Frobenius inner products with random rank-one matrices of the form ajaja_j a_j^* for some measurement vectors a1,...,ama_1,...,a_m, i.e., the measurements are given by yj=tr(Xajaj)y_j = \mathrm{tr}(X a_j a_j^*). The case where the matrix X=xxX=x x^* to be recovered is of rank one reduces to the problem of phaseless estimation (from measurements, yj=x,aj2y_j = |\langle x,a_j\rangle|^2 via the PhaseLift approach, which has been introduced recently. We derive bounds for the number mm of measurements that guarantee successful uniform recovery of Hermitian rank rr matrices, either for the vectors aja_j, j=1,...,mj=1,...,m, being chosen independently at random according to a standard Gaussian distribution, or aja_j being sampled independently from an (approximate) complex projective tt-design with t=4t=4. In the Gaussian case, we require mCrnm \geq C r n measurements, while in the case of 44-designs we need mCrnlog(n)m \geq Cr n \log(n). Our results are uniform in the sense that one random choice of the measurement vectors aja_j guarantees recovery of all rank rr-matrices simultaneously with high probability. Moreover, we prove robustness of recovery under perturbation of the measurements by noise. The result for approximate 44-designs generalizes and improves a recent bound on phase retrieval due to Gross, Kueng and Krahmer. In addition, it has applications in quantum state tomography. Our proofs employ the so-called bowling scheme which is based on recent ideas by Mendelson and Koltchinskii.Comment: 24 page

    Fair redistricting is hard

    Get PDF
    Gerrymandering is a long-standing issue within the U.S. political system, and it has received scrutiny recently by the U.S. Supreme Court. In this note, we prove that deciding whether there exists a fair redistricting among legal maps is NP-hard. To make this precise, we use simplified notions of "legal" and "fair" that account for desirable traits such as geographic compactness of districts and sufficient representation of voters. The proof of our result is inspired by the work of Mahanjan, Minbhorkar and Varadarajan that proves that planar k-means is NP-hard

    Stable low-rank matrix recovery via null space properties

    Full text link
    The problem of recovering a matrix of low rank from an incomplete and possibly noisy set of linear measurements arises in a number of areas. In order to derive rigorous recovery results, the measurement map is usually modeled probabilistically. We derive sufficient conditions on the minimal amount of measurements ensuring recovery via convex optimization. We establish our results via certain properties of the null space of the measurement map. In the setting where the measurements are realized as Frobenius inner products with independent standard Gaussian random matrices we show that 10r(n1+n2)10 r (n_1 + n_2) measurements are enough to uniformly and stably recover an n1×n2n_1 \times n_2 matrix of rank at most rr. We then significantly generalize this result by only requiring independent mean-zero, variance one entries with four finite moments at the cost of replacing 1010 by some universal constant. We also study the case of recovering Hermitian rank-rr matrices from measurement matrices proportional to rank-one projectors. For mCrnm \geq C r n rank-one projective measurements onto independent standard Gaussian vectors, we show that nuclear norm minimization uniformly and stably reconstructs Hermitian rank-rr matrices with high probability. Next, we partially de-randomize this by establishing an analogous statement for projectors onto independent elements of a complex projective 4-designs at the cost of a slightly higher sampling rate mCrnlognm \geq C rn \log n. Moreover, if the Hermitian matrix to be recovered is known to be positive semidefinite, then we show that the nuclear norm minimization approach may be replaced by minimizing the 2\ell_2-norm of the residual subject to the positive semidefinite constraint. Then no estimate of the noise level is required a priori. We discuss applications in quantum physics and the phase retrieval problem.Comment: 26 page

    Improving compressed sensing with the diamond norm

    Full text link
    In low-rank matrix recovery, one aims to reconstruct a low-rank matrix from a minimal number of linear measurements. Within the paradigm of compressed sensing, this is made computationally efficient by minimizing the nuclear norm as a convex surrogate for rank. In this work, we identify an improved regularizer based on the so-called diamond norm, a concept imported from quantum information theory. We show that -for a class of matrices saturating a certain norm inequality- the descent cone of the diamond norm is contained in that of the nuclear norm. This suggests superior reconstruction properties for these matrices. We explicitly characterize this set of matrices. Moreover, we demonstrate numerically that the diamond norm indeed outperforms the nuclear norm in a number of relevant applications: These include signal analysis tasks such as blind matrix deconvolution or the retrieval of certain unitary basis changes, as well as the quantum information problem of process tomography with random measurements. The diamond norm is defined for matrices that can be interpreted as order-4 tensors and it turns out that the above condition depends crucially on that tensorial structure. In this sense, this work touches on an aspect of the notoriously difficult tensor completion problem.Comment: 25 pages + Appendix, 7 Figures, published versio
    corecore