7,491 research outputs found

    ZnO layers deposited by Atomic Layer Deposition

    Get PDF
    The structure of 40 nm thick epitaxial ZnO layers grown on single crystalline sapphire and GaN substrates by atomic layer deposition has been studied using transmission electron microscopy. The growth is carried out between 150°C and 300°C without any buffer layer using di-ethyl zinc and water precursors. The ZnO layer on sapphire is found to be polycrystalline, which is probably due to the large misfit (~15 %) and the relatively low deposition temperature. However, the small misfit (~1.8 %) between the ZnO layer that is deposited on GaN at 300°C resulted in a high quality single crystalline layer

    Confirmatory factor analysis and invariance testing between Blacks and Whites of the Multidimensional Health Locus of Control scale.

    Get PDF
    The factor structure of the Multidimensional Health Locus of Control scale remains in question. Additionally, research on health belief differences between Black and White respondents suggests that the Multidimensional Health Locus of Control scale may not be invariant. We reviewed the literature regarding the latent variable structure of the Multidimensional Health Locus of Control scale, used confirmatory factor analysis to confirm the three-factor structure of the Multidimensional Health Locus of Control, and analyzed between-group differences in the Multidimensional Health Locus of Control structure and means across Black and White respondents. Our results indicate differences in means and structure, indicating more research is needed to inform decisions regarding whether and how to deploy the Multidimensional Health Locus of Control appropriately

    Design-thinking, making, and innovating: Fresh tools for the physician\u27s toolbox

    Get PDF
    Medical school education should foster creativity by enabling students to become \u27makers\u27 who prototype and design. Healthcare professionals and students experience pain points on a daily basis, but are not given the tools, training, or opportunity to help solve them in new, potentially better ways. The student physician of the future will learn these skills through collaborative workshops and having dedicated \u27innovation time.\u27 This pre-clinical curriculum would incorporate skills centered on (1) Digital Technology and Small Electronics (DTSE), (2) Textiles and Medical Materials (TMM), and (3) Rapid Prototyping Technologies (RPT). Complemented by an on-campus makerspace, students will be able to prototype and iterate on their ideas in a fun and accessible space. Designing and making among and between patients and healthcare professionals would change the current dynamic of medical education, empowering students to solve problems in healthcare even at an early stage in their career. By doing so, they will gain empathy, problem-solving abilities, and communication skills that will extend into clinical practice. Our proposed curriculum will equip medical students with the skills, passion, and curiosity to impact the future of healthcare

    Interpretation of scanning tunneling quasiparticle interference and impurity states in cuprates

    Full text link
    We apply a recently developed method combining first principles based Wannier functions with solutions to the Bogoliubov-de Gennes equations to the problem of interpreting STM data in cuprate superconductors. We show that the observed images of Zn on the surface of Bi2_2Sr2_2CaCu2_2O8_8 can only be understood by accounting for the tails of the Cu Wannier functions, which include significant weight on apical O sites in neighboring unit cells. This calculation thus puts earlier crude "filter" theories on a microscopic foundation and solves a long standing puzzle. We then study quasiparticle interference phenomena induced by out-of-plane weak potential scatterers, and show how patterns long observed in cuprates can be understood in terms of the interference of Wannier functions above the surface. Our results show excellent agreement with experiment and enable a better understanding of novel phenomena in the cuprates via STM imaging.Comment: 5 pages, 5 figures, published version (Supplemental Material: 5 pages, 11 figures) for associated video file, see http://itp.uni-frankfurt.de/~kreisel/QPI_BSCCO_BdG_p_W.mp

    Fluctuation-induced forces between inclusions in a fluid membrane under tension

    Full text link
    We discuss the fluctuation-induced force, a finite-temperature analog of the Casimir force, between two inclusions embedded in a fluid membrane under tension. We suggest a method to calculate this Casimir interaction in the most general case, where membrane fluctuations are governed by the combined action of surface tension, bending modulus, and the Gaussian rigidity. We find that the surface tension strongly modifies the power law in the separation dependence of the Casimir interaction. This results in a strong suppression of the Casimir force at separations beyond a characteristic length, which could affect protein aggregation dynamics in cell membranes.Comment: 4 pages, 1 figur

    Anomalous physical properties of underdoped weak-ferromagnetic superconductor RuSr2_2EuCu2_{2}O8_{8}

    Full text link
    Similar to the optimal-doped, weak-ferromagnetic (WFM induced by canted antiferromagnetism, TCurie_{Curie} = 131 K) and superconducting (Tc_{c} = 56 K) RuSr2_{2}GdCu2_{2}O8_{8}, the underdoped RuSr2_{2}EuCu2_{2}O8_{8} (TCurie_{Curie} = 133 K, Tc_{c} = 36 K) also exhibited a spontaneous vortex state (SVS) between 16 K and 36 K. The low field (±\pm20 G) superconducting hysteresis loop indicates a weak and narrow Meissner state region of average lower critical field Bc1ave_{c1}^{ave}(T) = Bc1ave_{c1}^{ave}(0)[1 - (T/TSVS_{SVS})2^{2}], with Bc1ave_{c1}^{ave}(0) = 7 G and TSVS_{SVS} = 16 K. The vortex melting transition (Tmelting_{melting} = 21 K) below Tc_{c} obtained from the broad resistivity drop and the onset of diamagnetic signal indicates a vortex liquid region due to the coexistence and interplay between superconductivity and WFM order. No visible jump in specific heat was observed near Tc_{c} for Eu- and Gd-compound. This is not surprising, since the electronic specific heat is easily overshadowed by the large phonon and weak-ferromagnetic contributions. Furthermore, a broad resistivity transition due to low vortex melting temperature would also lead to a correspondingly reduced height of any specific heat jump. Finally, with the baseline from the nonmagnetic Eu-compound, specific heat data analysis confirms the magnetic entropy associated with antiferromagnetic ordering of Gd3+^{3+} (J = S = 7/2) at 2.5 K to be close to NAk\it{N_{A}k} ln8 as expected.Comment: 7 figure
    • …
    corecore