42 research outputs found

    Group Marriage Problem

    Full text link
    Let GG be a permutation group acting on [n]={1,...,n}[n]=\{1, ..., n\} and V={Vi:i=1,...,n}\mathcal{V}=\{V_{i}: i=1, ..., n\} be a system of nn subsets of [n][n]. When is there an element gGg \in G so that g(i)Vig(i) \in V_{i} for each i[n]i \in [n]? If such gg exists, we say that GG has a GG-marriage subject to V\mathcal{V}. An obvious necessary condition is the {\it orbit condition}: for any Y[n]\emptyset \not = Y \subseteq [n], yYVyYg={g(y):yY}\bigcup_{y \in Y} V_{y} \supseteq Y^{g}=\{g(y): y \in Y \} for some gGg \in G. Keevash (J. Combin. Theory Ser. A 111(2005), 289--309) observed that the orbit condition is sufficient when GG is the symmetric group \Sym([n]); this is in fact equivalent to the celebrated Hall's Marriage Theorem. We prove that the orbit condition is sufficient if and only if GG is a direct product of symmetric groups. We extend the notion of orbit condition to that of kk-orbit condition and prove that if GG is the alternating group \Alt([n]) or the cyclic group CnC_{n} where n4n \ge 4, then GG satisfies the (n1)(n-1)-orbit condition subject to \V if and only if GG has a GG-marriage subject to V\mathcal{V}

    Gallai-Edmonds Structure Theorem for Weighted Matching Polynomial

    Full text link
    In this paper, we prove the Gallai-Edmonds structure theorem for the most general matching polynomial. Our result implies the Parter-Wiener theorem and its recent generalization about the existence of principal submatrices of a Hermitian matrix whose graph is a tree. keywords:Comment: 34 pages, 5 figure

    The covering radius problem for sets of perfect matchings

    Full text link
    Consider the family of all perfect matchings of the complete graph K2nK_{2n} with 2n2n vertices. Given any collection M\mathcal M of perfect matchings of size ss, there exists a maximum number f(n,x)f(n,x) such that if sf(n,x)s\leq f(n,x), then there exists a perfect matching that agrees with each perfect matching in M\mathcal M in at most x1x-1 edges. We use probabilistic arguments to give several lower bounds for f(n,x)f(n,x). We also apply the Lov\'asz local lemma to find a function g(n,x)g(n,x) such that if each edge appears at most g(n,x)g(n, x) times then there exists a perfect matching that agrees with each perfect matching in M\mathcal M in at most x1x-1 edges. This is an analogue of an extremal result vis-\'a-vis the covering radius of sets of permutations, which was studied by Cameron and Wanless (cf. \cite{cameron}), and Keevash and Ku (cf. \cite{ku}). We also conclude with a conjecture of a more general problem in hypergraph matchings.Comment: 10 page
    corecore