7,516 research outputs found
ZnO layers deposited by Atomic Layer Deposition
The structure of 40 nm thick epitaxial ZnO layers grown on single crystalline
sapphire and GaN substrates by atomic layer deposition has been studied using transmission
electron microscopy. The growth is carried out between 150°C and 300°C without any buffer
layer using di-ethyl zinc and water precursors. The ZnO layer on sapphire is found to be
polycrystalline, which is probably due to the large misfit (~15 %) and the relatively low
deposition temperature. However, the small misfit (~1.8 %) between the ZnO layer that is
deposited on GaN at 300°C resulted in a high quality single crystalline layer
Confirmatory factor analysis and invariance testing between Blacks and Whites of the Multidimensional Health Locus of Control scale.
The factor structure of the Multidimensional Health Locus of Control scale remains in question. Additionally, research on health belief differences between Black and White respondents suggests that the Multidimensional Health Locus of Control scale may not be invariant. We reviewed the literature regarding the latent variable structure of the Multidimensional Health Locus of Control scale, used confirmatory factor analysis to confirm the three-factor structure of the Multidimensional Health Locus of Control, and analyzed between-group differences in the Multidimensional Health Locus of Control structure and means across Black and White respondents. Our results indicate differences in means and structure, indicating more research is needed to inform decisions regarding whether and how to deploy the Multidimensional Health Locus of Control appropriately
Design-thinking, making, and innovating: Fresh tools for the physician\u27s toolbox
Medical school education should foster creativity by enabling students to become \u27makers\u27 who prototype and design. Healthcare professionals and students experience pain points on a daily basis, but are not given the tools, training, or opportunity to help solve them in new, potentially better ways. The student physician of the future will learn these skills through collaborative workshops and having dedicated \u27innovation time.\u27 This pre-clinical curriculum would incorporate skills centered on (1) Digital Technology and Small Electronics (DTSE), (2) Textiles and Medical Materials (TMM), and (3) Rapid Prototyping Technologies (RPT). Complemented by an on-campus makerspace, students will be able to prototype and iterate on their ideas in a fun and accessible space. Designing and making among and between patients and healthcare professionals would change the current dynamic of medical education, empowering students to solve problems in healthcare even at an early stage in their career. By doing so, they will gain empathy, problem-solving abilities, and communication skills that will extend into clinical practice. Our proposed curriculum will equip medical students with the skills, passion, and curiosity to impact the future of healthcare
Interpretation of scanning tunneling quasiparticle interference and impurity states in cuprates
We apply a recently developed method combining first principles based Wannier
functions with solutions to the Bogoliubov-de Gennes equations to the problem
of interpreting STM data in cuprate superconductors. We show that the observed
images of Zn on the surface of BiSrCaCuO can only be understood
by accounting for the tails of the Cu Wannier functions, which include
significant weight on apical O sites in neighboring unit cells. This
calculation thus puts earlier crude "filter" theories on a microscopic
foundation and solves a long standing puzzle. We then study quasiparticle
interference phenomena induced by out-of-plane weak potential scatterers, and
show how patterns long observed in cuprates can be understood in terms of the
interference of Wannier functions above the surface. Our results show excellent
agreement with experiment and enable a better understanding of novel phenomena
in the cuprates via STM imaging.Comment: 5 pages, 5 figures, published version (Supplemental Material: 5
pages, 11 figures) for associated video file, see
http://itp.uni-frankfurt.de/~kreisel/QPI_BSCCO_BdG_p_W.mp
Fluctuation-induced forces between inclusions in a fluid membrane under tension
We discuss the fluctuation-induced force, a finite-temperature analog of the
Casimir force, between two inclusions embedded in a fluid membrane under
tension. We suggest a method to calculate this Casimir interaction in the most
general case, where membrane fluctuations are governed by the combined action
of surface tension, bending modulus, and the Gaussian rigidity. We find that
the surface tension strongly modifies the power law in the separation
dependence of the Casimir interaction. This results in a strong suppression of
the Casimir force at separations beyond a characteristic length, which could
affect protein aggregation dynamics in cell membranes.Comment: 4 pages, 1 figur
Anomalous physical properties of underdoped weak-ferromagnetic superconductor RuSrEuCuO
Similar to the optimal-doped, weak-ferromagnetic (WFM induced by canted
antiferromagnetism, T = 131 K) and superconducting (T = 56 K)
RuSrGdCuO, the underdoped RuSrEuCuO
(T = 133 K, T = 36 K) also exhibited a spontaneous vortex state
(SVS) between 16 K and 36 K. The low field (20 G) superconducting
hysteresis loop indicates a weak and narrow Meissner state region of average
lower critical field B(T) = B(0)[1 -
(T/T)], with B(0) = 7 G and T = 16 K. The
vortex melting transition (T = 21 K) below T obtained from
the broad resistivity drop and the onset of diamagnetic signal indicates a
vortex liquid region due to the coexistence and interplay between
superconductivity and WFM order. No visible jump in specific heat was observed
near T for Eu- and Gd-compound. This is not surprising, since the
electronic specific heat is easily overshadowed by the large phonon and
weak-ferromagnetic contributions. Furthermore, a broad resistivity transition
due to low vortex melting temperature would also lead to a correspondingly
reduced height of any specific heat jump. Finally, with the baseline from the
nonmagnetic Eu-compound, specific heat data analysis confirms the magnetic
entropy associated with antiferromagnetic ordering of Gd (J = S = 7/2)
at 2.5 K to be close to ln8 as expected.Comment: 7 figure
- …