10 research outputs found

    Chlorophyll-a concentrations in phytoplankton fractions in waters of the Black Sea

    No full text
    Comparison of daily and diel variability of chlorophyll-a concentration at three long-term stations in meso- and eutrophic regions indicates that their values are similar. Daily patterns of deviation in chlorophyll concentration in small and large phytoplankton fraction from average daily values are presented. In conformity with a hypothesis of daily removal rhythms correlated with changes in diel light-dark periods, it was concluded that the mesotrophic region during the dark period is characterized by predominance of grazing on large phytoplankton in the upper layers and accumulation of detritus from cell fragments in the lower layer, while during the light period smaller phytoplankton predominantly grazed. The eutrophic region is characterized by predominance of grazing on small phytoplankton fraction in the upper layers during the dark period and settling out of fecal pellets containing chlorophyll into deeper depths; but during the light period, large phytoplankton predominantly grazed throughout the whole water layer

    Spatial variations of size-fractionated chlorophyll, cyanobacteria and heterotrophic bacteria in the Central and Western Pacific

    No full text
    Geographic and vertical variations of size-fractionated (0.2-1 mu m, 1-10 mu m, and >10 mu m) Chlorophyll a (Chl.a) concentration, cyanobacteria abundance and heterotrophic bacteria abundance were investigated at 13 stations from 4 degrees S, 160 degrees W to 30 degrees N, 140 degrees E in November 1993. The results indicated a geographic distribution pattern of these parameters with instances of high values occurring in the equatorial region and offshore areas, and with instance of low values occurring in the oligotrophic regions where nutrients were almost undetectable. Cyanobacteria showed the highest geographic variation (ranging from 27x10(3) to 16,582x10(3) cell l(-1)), followed by Chl.a (ranging from 0.048 to 0.178 mu g l(-1)), and heterotrophic bacteria (ranging from 2.84x10(3) to 6.50 x 10(5) cell l(-1)). Positive correlations were observed between nutrients and Chl.a abundance. Correspondences of cyanobacteria and heterotrophic bacteria abundances to nutrients were less significant than that of Chl.a. The total Chl.a was accounted for 1.0-30.9\%, 35.9-53.7\%, and 28.1-57.3\% by the >10 mu m, 1-10 mu m and 0.2-1 mu m fractions respectively. Correlation between size-fractionated Chl.a and nutrients suggest that the larger the cell size, the more nutrient-dependent growth and production of the organism. The ratio of pheophytin to chlorophyll implys that more than half of the > 10 mu m and about one third of the 1-10 mu m pigment-containing particles in the oligotrophic region were non-living fragments, while most of the 1-10 mu m fraction was living cells. In the depth profiles, cyanobacteria were distributed mainly in the surface layer, whereas heterotrophic bacteria were abundant from surface to below the euphotic zone. Chl.a peaked at the surface layer (0-20 m) in the equatorial area and at the nitracline (75-100 m) in the oligotrophic regions. Cyanobacteria were not the principle component of the picoplankton. The carbon biomass ratio of heterotroph to phytoplankton was greater than 1 in the eutrophic area and lower than 1 in oligotrophic waters
    corecore