6 research outputs found

    Registration accuracy and image quality of time averaged mid-position CT scans for liver SBRT.

    No full text
    The purpose was to validate the accuracy of motion models derived from deformable registration from four-dimensional computed tomography (4DCT) and breath-hold contrast enhanced computed tomography (BHCCT) scans for liver SBRT. Additionally, the image quality of the time averaged mid-position (MidP) CT constructed using the detected motion model was assessed. 4DCT and BHCCT liver scans of 11 patients were acquired with 1 or 2 fiducial markers. Using parametric sampling the markers were digitally removed. Phase-based optical flow was used to register the 4D frames and the BHCCT, and create MidP data. We compared the deformable registration of the markerless scans with the actual displacement of the markers to assess registration accuracy. The noise levels of the MidP scans were compared to those of the 4DCT and BHCCT data. We found an average misregistration of 1.8mm (± 0.5mm). The constructed MidPCT scan contained around three times less noise than the original 4D scan. The residual error between the MidPCT and the BHCCT was 3.0mm (± 0.9 mm). High precision deformable image registration of 4DCT and BHCCT liver cancer patients was achieved and used to create motion compensated MidPCT scans, with increased contrast-to-noise (CNR) levels. This improved visualisation of tumours and anatomy, facilitates radiotherapy treatment plannin

    4D CT amplitude binning for the generation of a time-averaged 3D mid-position CT scan.

    No full text
    The purpose of this study was to develop a method to use amplitude binned 4D-CT (A-4D-CT) data for the construction of mid-position CT data and to compare the results with data created from phase-binned 4D-CT (P-4D-CT) data. For the latter purpose we have developed two measures which describe the regularity of the 4D data and we have tried to correlate these measures with the regularity of the external respiration signal. 4D-CT data was acquired for 27 patients on a combined PET-CT scanner. The 4D data were reconstructed twice, using phase and amplitude binning. The 4D frames of each dataset were registered using a quadrature-based optical flow method. After registration the deformation vector field was repositioned to the mid-position. Since amplitude-binned 4D data does not provide temporal information, we corrected the mid-position for the occupancy of the bins. We quantified the differences between the two mid-position datasets in terms of tumour offset and amplitude differences. Furthermore, we measured the standard deviation of the image intensity over the respiration after registration (sigma(registration)) and the regularity of the deformation vector field ((Delta vertical bar J vertical bar) over bar) to quantify the quality of the 4D-CT data. These measures were correlated to the regularity of the external respiration signal (sigma(signal)). The two irregularity measures, (Delta vertical bar J vertical bar) over bar and sigma(registration), were dependent on each other (p <0.0001, R-2 = 0.80 for P-4D-CT, R-2 = 0.74 for A-4D-CT). For all datasets amplitude binning resulted in lower <(Delta vertical bar J vertical bar)over bar> and sigma(registration) and large decreases led to visible quality improvements in the mid-position data. The quantity of artefact decrease was correlated to the irregularity of the external respiratory signal. The average tumour offset between the phase and amplitude binned midposition without occupancy correction was 0.42 mm in the caudal direction (10.6% of the amplitude). After correction this was reduced to 0.16 mm in caudal direction (4.1% of the amplitude). Similar relative offsets were found at the diaphragm. We have devised a method to use amplitude binned 4D-CT to construct motion model and generate a mid-position planning CT for radiotherapy treatment purposes. We have decimated the systematic offset of this midposition model with a motion model derived from P-4D-CT. We found that the A-4D-CT led to a decrease of local artefacts and that this decrease was correlated to the irregularity of the external respiration signa

    PET motion compensation for radiation therapy using a CT-based mid-position motion model: methodology and clinical evaluation.

    No full text
    PURPOSE: Four-dimensional positron emission tomography (4D PET) imaging of the thorax produces sharper images with reduced motion artifacts. Current radiation therapy planning systems, however, do not facilitate 4D plan optimization. When images are acquired in a 2-minute time slot, the signal-to-noise ratio of each 4D frame is low, compromising image quality. The purpose of this study was to implement and evaluate the construction of mid-position 3D PET scans, with motion compensated using a 4D computed tomography (CT)-derived motion model. METHODS AND MATERIALS: All voxels of 4D PET were registered to the time-averaged position by using a motion model derived from the 4D CT frames. After the registration the scans were summed, resulting in a motion-compensated 3D mid-position PET scan. The method was tested with a phantom dataset as well as data from 27 lung cancer patients. RESULTS: PET motion compensation using a CT-based motion model improved image quality of both phantoms and patients in terms of increased maximum SUV (SUV(max)) values and decreased apparent volumes. In homogenous phantom data, a strong relationship was found between the amplitude-to-diameter ratio and the effects of the method. In heterogeneous patient data, the effect correlated better with the motion amplitude. In case of large amplitudes, motion compensation may increase SUV(max) up to 25% and reduce the diameter of the 50% SUV(max) volume by 10%. CONCLUSIONS: 4D CT-based motion-compensated mid-position PET scans provide improved quantitative data in terms of uptake values and volumes at the time-averaged position, thereby facilitating more accurate radiation therapy treatment planning of pulmonary lesions
    corecore