91 research outputs found

    On the kinetics of the hydrogen evolution reaction on zinc in sulfate solutions

    Get PDF
    The kinetics and mechanism of the hydrogen evolution reaction (her) were studied on zinc in 1.0 mol dm-3 Na2SO4 at 298 K, in the pH range 4.4 - 10. It was found that a combination of classical potentiostatic steady-state voltammetry (PSV) and electrochemical impedance spectroscopy (EIS) can help to elucidate dilemmas concerning the mechanism of this reaction. Thus, over the whole potential region, the reaction path of the her on zinc cannot be presented by the classical Volmer-Tafel-Heyrovsky route. It was found that the very complex S-shape of the polarization curves could be explained by two parallel reaction mechanisms for the her. The first reaction mechanism is a consecutive combination of three steps, in which the surface zinc oxide plays an active role in the her, and second reaction mechanism is a consecutive combination of a Volmer step, followed by a Heyrovsky step. The second mechanism is dominant in the more negative potential region where the active sites for the her are metallic zinc

    Ni-MoO2 composite cathodes for hydrogen evolution in alkaline solution: Effect of aging of the electrolyte for their electrodeposition

    Get PDF
    In this work the effect of aging of the electrolyte for electrodeposition of Ni-MoO2 composite coatings on their morphology (scanning electron microscopy), chemical composition (energy-dispersive X-ray spectroscopy), polarization characteristics and the ā€œservice lifeā€ test performance for the hydrogen evolution reaction (HER) in 32 mass % NaOH at 90Ā°C was investigated. Polarization characteristics and results of the ā€œservice lifeā€ test of Ni-MoO2 composite coatings obtained after different aging periods of the electrolyte for deposition (suspension of MoO2 powder particles in the solution containing 2 M NH4Cl + 0.2 M NiCl2) were compared with that recorded for De Noraā€™s commercial Ni+RuO2 cathode coating (DN). It was shown that aging of the electrolyte did not influence the morphology and chemical composition of Ni-MoO2 composite coatings electrodeposited under simulated conditions for their industrial production, while polarization characteristics for the HER were influenced. The best coating, obtained after 180 days of the electrolyte aging, showed completely different (layered) structure of the deposit and significantly better performance than the commercial DN electrode during the ā€œservice lifeā€ test. [Projekat Ministarstva nauke Republike Srbije, br. 172054

    Electrodeposition of NiMo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution

    Get PDF
    The hydrogen evolution reaction on electrodeposited NiMo alloy coatings, as well as their electrochemical properties in NaOH solutions have been investigated by polarization measurements, cyclic voltammetry and EIS technique. It is shown that NiMo alloy coatings electrodeposited from pyrophosphate-sodium bicarbonate bath possess high catalytic activity for hydrogen evolution in NaOH solutions. Their stability in 1M NaOH at 25 0C under the condition of reverse polarization is shown to be very good, while in 33% NaOH at 850C (conditions of industrial electrolysis) electrodeposited NiMo alloy coatings exhibit also high catalytic activity, but low stability, as a consequence of massive dissolution of alloy coatings under the condition of reverse polarization

    Ni-(Ebonex-supported Ir) composite coatings as electrocatalysts for alkaline water electrolysis. Part I: Hydrogen evolution

    Get PDF
    The hydrogen evolution reaction (HER) was studied at electrodeposited Ni and Ni-(Ebonex/Ir) composite coatings in 1 mol dm-3 NaOH solution at 25 Ā°C. The Ni-(Ebonex/Ir) coatings were electrodeposited from a nickel Watts type bath containing different amounts of suspended Ebonex/Ir(30 wt.%) powder particles (0-2 g dm-3) onto a Ni 40 mesh substrate. The electrodes were investigated by cyclic voltammetry (CV), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), electrochemical impedance spectroscopy (EIS) and polarization measurements. It was shown that the roughness factor of coatings increased to a maximum value of 27 with increasing the concentration of Ebonex/Ir particles in the deposition bath, while that of a pure Ni coating was found to be 3.2. In the whole potential range of the HER only one Tafel slope of about -120 mV dec-1 was observed at all polarization curves. Considerably improved intrinsic catalytic activity for the HER compared to pure Ni was achieved with the composite coating deposited from the bath with the lowest concentration of Ebonex/Ir particles (0.1 g dm-3). Further enhancement of the apparent catalytic activity for the HER of Ni-(Ebonex/Ir) composite coatings obtained at higher concentrations of suspended Ebonex/Ir particles in the bath was attributed only to the increase of their electrochemically active surface area. Ā© 2015 Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved

    On the kinetics of the hydrogen evolution reaction on Ni-MoOx composite catalysts in alkaline solutions

    Get PDF
    MoO3 particles were co-deposited with Ni onto smooth or rough Ni supports from modified Wattā€™s baths of different compositions. Morphology and composition of the electrodeposits were characterized by means of cyclic voltammetry, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. The electrocatalytic activity of the composite catalysts for H2 evolution in alkaline solutions was determined by quasi-stationary polarization curves. Activity increases with MoOx content in the Ni deposit up to a limiting value. Composite Ni-MoOx catalyst performed high catalytic activity, similar to that of commercial Ni-RuO2 catalyst. Stability tests showed that Ni-MoOx codeposits are stable under condition of constant current and exhibit excellent tolerance to repeated short-circuiting

    Kinetics of the Hydrogen Oxidation on Pt Modified Moox Nano-Sized Catalyst in the Presence of Carbon Monoxide

    Get PDF
    Poster presented at the 11th Conference of the Materials Research Society of Serbia - YUCOMAT 2009, Herceg Novi, Montenegro, August 31 ā€“ September 4, 2009

    Korozioni aspekti nano-katalizatora na bazi plemenitih metala

    Get PDF
    U poslednjih deset godina doŔlo je do snažnog razvoja različitih tipova gorivnih spregova kao Ŕto su: spregovi sa čvrstim polimernim elektroltima visoko-temperaturni gorivni spregovi, spregovi sa čvrstim elektrolitima na bazi oksida metala, fosforni gorivni spregovi itd. Ovaj razvoj je pre svega ostvaren primenom nanokatalizatora. U navedenim gorivnim spregovima koriste se katalizatori na bazi plemenitih metala, pre svega platina l njene legure gde srednja veličina čestica varira u opsegu od 2 - 5 nm, čime se ostvaruje izuzetno velika specifična povrŔina katalizatora u opsegu od 20 do 120 m2/g a time i visoka radna gustina struje, po geometrijskoj povrŔini elektrode (~ 1 A / cm2)

    Kinetics of the hydrogen oxidation on pt modified MoOx nano-sized catalyst in the presence of carbon monoxide

    Get PDF
    Due to the importance of the HOR in fuel-cells technology, various Pt-based catalysts have been examined from the viewpoint of immunity of the electrocatalysis of the HOR from CO-poisoning of the anode catalysts. An appreciable improvement of the CO tolerance has been found at Pt with adatoms such as Ru, Sn [1,2], Pt-M (M=Ru, Rh, Os, W Sn) [3-5] based alloys, and Pt with oxides (RuOxHy) [6]. In the present work, the electrocatalytic of home made highly dispersed nano-sized MoOx-Pt/C catalysts prepared by the polyole method combined by MoOx post-deposition was investigated in the presence of CO, in 0.5 moldm-3 HClO4 solution. The partial pressure of CO in CO/H2 gas mixture was 100 ppm. Carbon monoxide was adsorbed on the RDE for various time interval with keeping the potential at 0.05 V (RHE). The coverage of CO was determined by applying the first potential sweep (from 0.04 to 1.20 V), in N2 saturated solution at potential scan rate of 0.1 Vs-1 and compared it with the sweep on the clean electrode, by measuring the decrease in the hydrogen desorption charge, Ī”QH. MoOx(20%)Pt/C catalyst exhibits an excellent CO tolerance, as it was found that the reduction in kinetic current, Ik, is negligible even at Ī˜CO = 0.46. It was found for this catalyst too, that the CO adsorption rate was much slower than that of Pt and the Pt sites for HOR were not so rigidly blocked by adsorbed CO partially due to its enhanced mobility, resulting from their modified electronic structure of surface Pt sites. Voltammetric studies suggest that an excellent CO tolerance of this catalyst could be also result of the oxidation of adsorbed CO to CO2 by oxophilic MoOx species at low overpotentials by a redox-mediated mechanism.Poster: [https://hdl.handle.net/21.15107/rcub_dais_266

    Synthesis and characterization of Pd nanocatalyst at tungsten carbide based support for fuel cells application

    Get PDF
    Tungsten carbide was prepared by polycondensation of resorcinol and formaldehyde in the presence cetyltrimethylammonium bromide (CTABr) surfactant. Pd nanocatalyst at this support was synthesized by borohydride reduction method. The obtained materials were characterized by XRD, HRTEM, EELS, XPS and electrochemical measurements. TEM analysis revealed Pd nanoparticles size in the range of a few nanometers, even the clusters of Pd atoms. X-Ray Photoelectron Spectroscopy was applied to determine surface composition of the substrates. The presence of palladium based species was revealed. The catalytic activity for the hydrogen oxidation reaction and oxygen reduction were investigated in 0.5 M HClO4 by cyclic voltammetry and linear sweep voltammetry at the rotating disc electrode. The catalystsā€™ activities were compared to the carbon supported Pd nanoparticles (Vulcan XC 72). WC supported Pd nanoparticles have shown higher CO tolerance, compared even to Pt based catalyst. Acknowledgements: This work was financially supported by Ministry of Education, Science and Technological Development, Republic of Serbia, contract No. 172054.The authors would like to acknowledge networking support by the COST Action MP1407

    Platinum Nanocatalysts at Titanium Oxide Based Supports for Low Temperature Fuel Cell Applications

    Get PDF
    A comparative study on catalytic activity of platinum nanoparticles on different titanium oxide supports for proton exchange membrane fuel cells reactions was performed. Non stoichiometric titanium oxides ā€“ Ebonex, niobium doped titanium oxide and ruthenium doped titanium oxide were applied as the supporting materials. Platinum nanocatalysts (20% Pt) on different support were synthesized by impregnation or borohydride reduction method. Synthesized supports and catalyst were characterized by BET (Brunauer, Emmett, Teller), X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Homogenous Pt nanoparticles distribution over the niobium and ruthenium doped TiO2 support, without pronounced particle agglomeration was confirmed by HRTEM technique. The average Pt particle size was 3 nm and 5.4 nm for Pt at niobium doped TiO2 and ruthenium doped TiO2, respectively. However, it was not possible to determine accurately average Pt particle size at Ebonex support, due to the non-uniform distribution of the Pt nanoparticles. Electrochemically active Pt surface area of the catalysts was determined by integration of the cyclic voltammetry curve in the potential region of underpotential deposition of hydrogen, after double layer charge correction, taking into account the reference value of 210 Ī¼C cm-2 for full monolayer coverage. Kinetics of the oxygen reduction reaction at Pt nanocatalysts on different titanium based supports was studied by cyclic voltammetry and linear sweep voltammetry at rotating gold disc electrode. Two different Tafel slopes at Pt catalysts on niobium and ruthenium doped supports were observed: one close to 60 mV dec-1 in low current density region, and other ~120 mV dec-1 in higher current densities region. Only at Ebonex based support one single Tafel slope (~ 106 mV dec-1) was observed. The specific activities for oxygen reduction, expressed in terms of kinetic current densities per electrochemically Pt active surface area, as well as per mass of Pt loaded, at the constant potential of practical interest (0.85 V and 0.90 V vs RHE, where the mass transport contribution current can be neglected), were compared to carbon supported one, with the same Pt loading. Stability tests, by repetitive cycling from 0.03V to high anodic potentials (up to 1.4 V vs RHE) were performed. The advantages of carbon free supports application in terms of stability, durability and life time of the catalysts were discussed
    • ā€¦
    corecore