54 research outputs found

    Quantifying long-range correlations in complex networks beyond nearest neighbors

    Full text link
    We propose a fluctuation analysis to quantify spatial correlations in complex networks. The approach considers the sequences of degrees along shortest paths in the networks and quantifies the fluctuations in analogy to time series. In this work, the Barabasi-Albert (BA) model, the Cayley tree at the percolation transition, a fractal network model, and examples of real-world networks are studied. While the fluctuation functions for the BA model show exponential decay, in the case of the Cayley tree and the fractal network model the fluctuation functions display a power-law behavior. The fractal network model comprises long-range anti-correlations. The results suggest that the fluctuation exponent provides complementary information to the fractal dimension

    The role of city size and urban form in the surface urban heat island

    Get PDF

    Effects of changing population or density on urban carbon dioxide emissions

    Get PDF
    The question of whether urbanization contributes to increasing carbon dioxide emissions has been mainly investigated via scaling relationships with population or population density. However, these approaches overlook the correlations between population and area, and ignore possible interactions between these quantities. Here, we propose a generalized framework that simultaneously considers the effects of population and area along with possible interactions between these urban metrics. Our results significantly improve the description of emissions and reveal the coupled role between population and density on emissions. These models show that variations in emissions associated with proportionate changes in population or density may not only depend on the magnitude of these changes but also on the initial values of these quantities. For US areas, the larger the city, the higher is the impact of changing its population or density on its emissions; but population changes always have a greater effect on emissions than population density.Comment: 13 two-column pages, 2 figures, supplementary information; accepted for publication in Nature Communication
    corecore