3 research outputs found

    Revealing the Dimeric Crystal and Solution Structure of β‑Lactoglobulin at pH 4 and Its pH and Salt Dependent Monomer–Dimer Equilibrium

    No full text
    The dimeric structure of bovine β-lactoglobulin A (BLGA) at pH 4.0 was solved to 2.0 Å resolution. Fitting the BLGA pH 4.0 structure to SAXS data at low ionic strength (goodness of fit <i>R</i>-factor = 3.6%) verified the dimeric state in solution. Analysis of the monomer–dimer equilibrium at varying pH and ionic strength by SAXS and scattering modeling showed that BLGA is dimeric at pH 3.0 and 4.0, shifting toward a monomer at pH 2.2, 2.6, and 7.0 yielding monomer/dimer ratios of 80/20%, 50/50%, and 25/75%, respectively. BLGA remained a dimer at pH 3.0 and 4.0 in 50–150 mM NaCl, whereas the electrostatic shielding raised the dimer content at pH 2.2, 2.6, and 7.0, i.e., below and above the pI. Overall, the findings provide new insights into the molecular characteristics of BLGA relevant for dairy product formulations and for various biotechnological and pharmaceutical applications

    Structures of PEP–PEO Block Copolymer Micelles: Effects of Changing Solvent and PEO Length and Comparison to a Thermodynamic Model

    No full text
    Structures of poly­(ethylene propylene)–poly­(ethylene oxide) (PEP–PEO) block copolymer micelles were determined from small-angle X-ray scattering and static light scattering and compared to predictions from a thermodynamic model. Both the corona block length and the solvent water–ethanol ratio were changed, leading to a thorough test of this model. With increasing ethanol fraction, the PEP core–solvent interfacial tension decreases, and the solvent quality for PEO changes. The weight-average block masses were 5.0 kDa for PEP and 2.8–49 kDa for PEO. For the lowest PEO molar mass and samples in pure water (except for the highest PEO molar mass), the micelles were cylindrical; for other conditions they were spherical. The structural parameters can be reasonably well described by the thermodynamic model by Zhulina et al. [<i>Macromolecules</i> <b>2005</b>, <i>38</i> (12), 5330–5351]; however, they have a stronger dependence on solvent composition and PEO molar mass than predicted

    Transfer of Direct and Moiré Patterns by Reactive Ion Etching Through Ex Situ Fabricated Nanoporous Polymer Masks

    No full text
    We present a conceptually simple approach to nanolithographic patterning utilizing ex situ fabricated nanoporous masks from block copolymers. The fabricated block copolymer (BC) masks show predictable morphology based on the correlation between BC composition and bulk properties, independent of substrates’ surface properties. The masks are prepared by microtoming of prealigned nanoporous polymer monoliths of hexagonal morphology at controlled angles; they appear as 30–60 nm thick films of typical dimensions 100 μm × 200 μm. Masks cut perpendicular to the cylindrical axis show monocrystalline hexagonal packing of 10 nm pores with a principal period of 20 nm. We demonstrate the transfer of the hexagonal pattern onto silicon by means of reactive ion etching through the masks. In addition, patterns of elliptic and slit-like holes on silicon are obtained by utilizing masks cut at 45° relative to the cylinder axis. Finally, we demonstrate the first transfer of moiré patterns from block copolymer masks to substrate. The nanoporous masks prepared ex situ show outstanding long-range order and can be applied directly onto any flat substrate, eliminating the need for topographic and chemical surface modification, which are essential prerequisites for the conventional procedure of block copolymer directed self-assembly. The demonstrated elliptic and moiré pattern transfers prove that the proposed ex situ procedure allows us to realize nanolithographic patterns that are difficult to realize by the conventional approach alone
    corecore