15 research outputs found

    Multiplex Flow Assays

    No full text
    [Image: see text] Lateral flow or dipstick assays (e.g., home pregnancy tests), where an analyte solution is drawn through a porous membrane and is detected by localization onto a capture probe residing at a specific site on the flow strip, are the most commonly and extensively used type of diagnostic assay. However, after over 30 years of use, these assays are constrained to measuring one or a few analytes at a time. Here, we describe a completely general method, in which any single-plex lateral flow assay is transformed into a multiplex assay capable of measuring an arbitrarily large number of analytes simultaneously. Instead of identifying the analyte by its localization onto a specific geometric location in the flow medium, the analyte-specific capture probe is identified by its association with a specific optically encoded region within the flow medium. The capture probes for nucleic acids, antigens, or antibodies are attached to highly porous agarose beads, which have been encoded using multiple lanthanide emitters to create a unique optical signature for each capture probe. The optically encoded capture probe-derivatized beads are placed in contact with the analyte-containing porous flow medium and the analytes are captured onto the encoded regions as the solution flows through the porous medium. To perform a multiplex diagnostic assay, a solution comprising multiple analytes is passed through the flow medium containing the capture probe-derivatized beads, and the captured analyte is treated with a suitable fluorescent reporter. We demonstrate this multiplex analysis technique by simultaneously measuring DNA samples, antigen–antibody pairs, and mixtures of multiple nucleic acids and antibodies

    Chronic beta(1)-adrenoceptor blockade impairs ischaemic tolerance and preconditioning in murine myocardium

    No full text
    beta-adrenoceptor antagonists are commonly used in ischaemic heart disease (IHD) patients, yet may impair signalling and efficacy of 'cardioprotective' interventions. We assessed effects of chronic beta(1)-adrenoceptor antagonism on myocardial resistance to ischaemia-reperfusion (IR) injury and the ability of cardioprotective interventions [classic ischaemic preconditioning (IPC); novel sustained ligand-activated preconditioning (SLP)] to reduce IR injury in murine hearts

    Quantitative proteomic and functional analysis of liver mitochondria from high fat diet (HFD) diabetic mice.

    No full text
    Insulin resistance plays a major role in the development of type 2 diabetes and obesity and affects a number of biological processes such as mitochondrial biogenesis. Though mitochondrial dysfunction has been linked to the development of insulin resistance and pathogenesis of type 2 diabetes, the precise mechanism linking the two is not well understood. We used high fat diet (HFD)-induced obesity dependent diabetes mouse models to gain insight into the potential pathways altered with metabolic disease, and carried out quantitative proteomic analysis of liver mitochondria. As previously reported, proteins involved in fatty acid oxidation, branched chain amino acid degradation, tricarboxylic acid cycle, and oxidative phosphorylation were uniformly up-regulated in the liver of HFD fed mice compared with that of normal diet. Further, our studies revealed that retinol metabolism is distinctly down-regulated and the mitochondrial structural proteins-components of mitochondrial inter-membrane space bridging (MIB) complex (Mitofilin, Sam50, and ChChd3), and Tim proteins-essential for protein import, are significantly up-regulated in HFD fed mice. Structural and functional studies on HFD and normal diet liver mitochondria revealed remodeling of HFD mitochondria to a more condensed form with increased respiratory capacity and higher ATP levels compared with normal diet mitochondria. Thus, it is likely that the structural remodeling is essential to accommodate the increased protein content in presence of HFD: the mechanism could be through the MIB complex promoting contact site and crista junction formation and in turn facilitating the lipid and protein uptake

    Hydrogen Sulfide--Mechanisms of Toxicity and Development of an Antidote.

    No full text
    Hydrogen sulfide is a highly toxic gas-second only to carbon monoxide as a cause of inhalational deaths. Its mechanism of toxicity is only partially known, and no specific therapy exists for sulfide poisoning. We show in several cell types, including human inducible pluripotent stem cell (hiPSC)-derived neurons, that sulfide inhibited complex IV of the mitochondrial respiratory chain and induced apoptosis. Sulfide increased hydroxyl radical production in isolated mouse heart mitochondria and F2-isoprostanes in brains and hearts of mice. The vitamin B12 analog cobinamide reversed the cellular toxicity of sulfide, and rescued Drosophila melanogaster and mice from lethal exposures of hydrogen sulfide gas. Cobinamide worked through two distinct mechanisms: direct reversal of complex IV inhibition and neutralization of sulfide-generated reactive oxygen species. We conclude that sulfide produces a high degree of oxidative stress in cells and tissues, and that cobinamide has promise as a first specific treatment for sulfide poisoning
    corecore