3 research outputs found

    A Selective and Slowly Reversible Inhibitor of l‑Type Amino Acid Transporter 1 (LAT1) Potentiates Antiproliferative Drug Efficacy in Cancer Cells

    No full text
    The l-type amino acid transporter 1 (LAT1) is a transmembrane protein carrying bulky and neutral amino acids into cells. LAT1 is overexpressed in several types of tumors, and its inhibition can result in reduced cancer cell growth. However, known LAT1 inhibitors lack selectivity over other transporters. In the present study, we designed and synthesized a novel selective LAT1 inhibitor (<b>1</b>), which inhibited the uptake of LAT1 substrate, l-leucin as well as cell growth. It also significantly potentiated the efficacy of bestatin and cisplatin even at low concentrations (25 μM). Inhibition was slowly reversible, as the inhibitor was able to be detached from the cell surface and blood–brain barrier. Moreover, the inhibitor was metabolically stable and selective toward LAT1. Since the inhibitor was readily accumulated into the prostate after intraperitoneal injection to the healthy mice, this compound may be a promising agent or adjuvant especially for the treatment of prostate cancer

    A Selective and Slowly Reversible Inhibitor of l‑Type Amino Acid Transporter 1 (LAT1) Potentiates Antiproliferative Drug Efficacy in Cancer Cells

    No full text
    The l-type amino acid transporter 1 (LAT1) is a transmembrane protein carrying bulky and neutral amino acids into cells. LAT1 is overexpressed in several types of tumors, and its inhibition can result in reduced cancer cell growth. However, known LAT1 inhibitors lack selectivity over other transporters. In the present study, we designed and synthesized a novel selective LAT1 inhibitor (<b>1</b>), which inhibited the uptake of LAT1 substrate, l-leucin as well as cell growth. It also significantly potentiated the efficacy of bestatin and cisplatin even at low concentrations (25 μM). Inhibition was slowly reversible, as the inhibitor was able to be detached from the cell surface and blood–brain barrier. Moreover, the inhibitor was metabolically stable and selective toward LAT1. Since the inhibitor was readily accumulated into the prostate after intraperitoneal injection to the healthy mice, this compound may be a promising agent or adjuvant especially for the treatment of prostate cancer

    Exploration of a Series of 5‑Arylidene-2-thioxoimidazolidin-4-ones as Inhibitors of the Cytolytic Protein Perforin

    No full text
    A series of novel 5-arylidene-2-thioxoimidazolidin-4-ones were investigated as inhibitors of the lymphocyte-expressed pore-forming protein perforin. Structure–activity relationships were explored through variation of an isoindolinone or 3,4-dihydroisoquinolinone subunit on a fixed 2-thioxoimidazolidin-4-one/thiophene core. The ability of the resulting compounds to inhibit the lytic activity of both isolated perforin protein and perforin delivered in situ by natural killer cells was determined. A number of compounds showed excellent activity at concentrations that were nontoxic to the killer cells, and several were a significant improvement on previous classes of inhibitors, being substantially more potent and soluble. Representative examples showed rapid and reversible binding to immobilized mouse perforin at low concentrations (≤2.5 μM) by surface plasmon resonance and prevented formation of perforin pores in target cells despite effective target cell engagement, as determined by calcium influx studies. Mouse PK studies of two analogues showed <i>T</i><sub>1/2</sub> values of 1.1–1.2 h (dose of 5 mg/kg iv) and MTDs of 60–80 mg/kg (ip)
    corecore