7,806 research outputs found
Effects of vertical distribution of soil inorganic nitrogen on root growth and subsequent nitrogen uptake by field vegetable crops
Information is needed about root growth and N uptake of crops under different soil conditions to increase nitrogen use efficiency in horticultural production. The purpose of this study was to investigate if differences in vertical distribution of soil nitrogen (Ninorg) affected root growth and N uptake of a variety of horticultural crops. Two field experiments were performed each over 2 years with shallow or deep placement of soil Ninorg obtained by management of cover crops. Vegetable crops of leek, potato, Chinese cabbage, beetroot, summer squash and white cabbage reached root depths of 0.5, 0.7, 1.3, 1.9, 1.9 and more than 2.4 m, respectively, at harvest, and showed rates of root depth penetration from 0.2 to 1.5 mm day)1 C)1. Shallow placement of soil Ninorg resulted in greater N uptake in the shallow-rooted leek and potato. Deep placement of soil Ninorg resulted in greater rates of root depth penetration in the deep-rooted Chinese cabbage, summer squash and white cabbage, which increased their depth by 0.2–0.4 m. The root frequency was decreased in shallow soil layers (white cabbage) and increased in deep soil layers (Chinese cabbage, summer squash and white cabbage). The influence of vertical distribution of soil Ninorg on root distribution and capacity for depletion of soil Ninorg was much less than the effect of inherent differences between species. Thus, knowledge about differences in root growth between species should be used when designing crop rotations with high N use efficiency
Temperature dependent deviations from ideal quantization of plateau conductances in GaAs quantum point contacts
We present detailed experimental studies of the temperature dependence of the
plateau conductance of GaAs quantum point contacts in the temperature range
from 0.3 K to 10 K. Due to a strong lateral confinement produced by a
shallow-etching technique we are able to observe the following unexpected
feature: a linear temperature dependence of the measured mid-plateau
conductance. We discuss an interpretation in terms of a temperature dependent,
intrinsic series resistance, due to non-ballistic effects in the 2D-1D
transition region. These results have been reproduced in several samples from
different GaAs/GaAlAs heterostructures and observed in different experimental
set-ups.Comment: 7 pages, 6 figures; to appear in proceedings of ICPS 2002, Edinburg
Predicting spring barley yield from variety-specific yield potential, disease resistance and straw length, and from environment-specific disease loads and weed pressure
Abstract For low-input crop production, well-characterised varieties increase the possibilities of managing diseases and weeds. This analysis aims at developing a framework for analyzing grain yield using external varietal information about disease resistance, weed competitiveness and yield potential and quantifying the impact of susceptibility grouping and straw length scores (as a measure for weed competitiveness) for predicting spring barley grain yield under variable biotic stress levels. The study
comprised 52 spring barley varieties and 17 environments, i.e., combinations of location, growing system and year. Individual varieties and their interactions with environments were analysed by factorial regression of grain yield on external variety information combined with observed environmental disease loads and weed pressure. The external information was based on the official Danish VCU testing. The most parsimonious models explained about 50% of the yield variation among varieties including genotypeenvironment interactions. Disease resistance characteristics of varieties, weighted with disease loads of powdery mildew, leaf rust and net blotch, respectively, had a highly significant influence on grain yield. The extend to which increased susceptibility resulted in increased yield losses in environments with high disease loads of the respective diseases was predicted. The effect of externally determined straw length scores, weighted with weed pressure, was weaker although significant for weeds with creeping growth habit. Higher grain yield was thus predicted for taller plants under weed pressure. The results are discussed in relation to the model ramework, impact of the considered traits and use of information from conventional variety testing in organic cropping systems
Conductance of a quantum point contact based on spin-density-functional theory
We present full quantum mechanical conductance calculations of a quantum
point contact (QPC) performed in the framework of the density functional theory
(DFT) in the local spin-density approximation (LDA). We show that a
spin-degeneracy of the conductance channels is lifted and the total conductance
exhibits a broad plateau-like feature at 0.5*2e^{2}/h. The lifting of the
spin-degeneracy is a generic feature of all studied QPC structures (both very
short and very long ones; with the lengths in the range 40<l<500 nm). The
calculated conductance also shows a hysteresis for forward- and backward sweeps
of the gate voltage. These features in the conductance can be traced to the
formation of weakly coupled quasi-bound states (magnetic impurities) inside the
QPC (also predicted in previous DFT-based studies). A comparison of obtained
results with the experimental data shows however, that while the spin-DFT based
"first-principle" calculations exhibits the spin polarization in the QPC, the
calculated conductance clearly does not reproduce the 0.7 anomaly observed in
almost all QPCs of various geometries. We critically examine major features of
the standard DFT-based approach to the conductance calculations and argue that
its inability to reproduce the 0.7 anomaly might be related to the infamous
derivative discontinuity problem of the DFT leading to spurious
self-interaction errors not corrected in the standard LDA. Our results indicate
that the formation of the magnetic impurities in the QPC might be an artefact
of the LDA when localization of charge is expected to occur. We thus argue that
an accurate description of the QPC structure would require approaches that go
beyond the standard DFT+LDA schemes.Comment: 9 pages, 5 figure
Modelling diverse root density dynamics and deep nitrogen uptake — a simple approach
We present a 2-D model for simulation of root density and plant nitrogen (N) uptake for crops grown in agricultural systems, based on a modification of the root density equation originally proposed by Gerwitz and Page in J Appl Ecol 11:773–781, (1974). A root system form parameter was introduced to describe the distribution of root length vertically and horizontally in the soil profile. The form parameter can vary from 0 where root density is evenly distributed through the soil profile, to 8 where practically all roots are found near the surface. The root model has other components describing root features, such as specific root length and plant N uptake kinetics. The same approach is used to distribute root length horizontally, allowing simulation of root growth and plant N uptake in row crops. The rooting depth penetration rate and depth distribution of root density were found to be the most important parameters controlling crop N uptake from deeper soil layers. The validity of the root distribution model was tested with field data for white cabbage, red beet, and leek. The model was able to simulate very different root distributions, but it was not able to simulate increasing root density with depth as seen in the experimental results for white cabbage. The model was able to simulate N depletion in different soil layers in two field studies. One included vegetable crops with very different rooting depths and the other compared effects of spring wheat and winter wheat. In both experiments variation in spring soil N availability and depth distribution was varied by the use of cover crops. This shows the model sensitivity to the form parameter value and the ability of the model to reproduce N depletion in soil layers. This work shows that the relatively simple root model developed, driven by degree days and simulated crop growth, can be used to simulate crop soil N uptake and depletion appropriately in low N input crop production systems, with a requirement of few measured parameters
The fate of organic carbon and nitrogen in experimental marine sediment systems: Influence of bioturbation and anoxia
The decay rate of particulate organic carbon (POC) and nitrogen (PON) was followed during 94 days in three homogenized sediment microcosms: 1. With a natural density of the polychaete Nereis virens (NOx-cores); 2. Defaunated, with an aerobic water phase (Ox-cores); and 3. Defaunated, with an anaerobic water phase (An-cores). In all cores there was a marked preferential mineralization of PON compared to POC. The presence of Nereis increased the net decomposition of POC and PON 2.6 and 1.6 times relative to Ox-cores. Ventilation of burrow structures by the worms increased the flux of O2, TCO2 and DIN across the sediment-water interface 2.5–3.5 times. This significantly decreased the pore water concentrations of TCO2 and DIN. Similarly, nitrification and denitrification were stimulated 2.3–2.4 times due to nereid activity. Oxygen did not increase organic degradation: in fact, the decay of POC and PON was faster in An- than in Ox-cores, 1.5–1.6 and 1.2 times, respectively. Sulfate reduction, measured at the end of experiment, was surprisingly low in the aerobic NOx- and Ox-cores relative to An-cores. Net ammonium production measured at the end of the experiment agreed with the mean loss of PON for Ox- and An-cores, but was low for NOx-cores, suggesting that a high C:N substrate was being degraded in these cores at the end. An empirical model describing the temporal decay pattern of POC and PON is presented: the detritus in all cores were initially composed of two fractions (similar C:N); a readily degradable (∼43%) and a low degradable (∼57%) fraction. A substantial part of the degradable fraction in NOx-cores was used during the experiment, with nitrogen being mineralized preferentially. The mean C:N molar ratio of detritus used was 5.9, compared to a value of 15.5 determined at the end. The Ox- and An-cores, however, showed similar C:N ratios for the detritus used during the experiment (3.7 and 4.8) and that measured at the end (4.2 and 4.6). Presumably not all the low C:N detritus had yet been mineralized in these cores at the end of experiment
Levitated droplet dye laser
We present the first observation, to our knowledge, of lasing from a
levitated, dye droplet. The levitated droplets are created by computer
controlled pico-liter dispensing into one of the nodes of a standing ultrasonic
wave (100 kHz), where the droplet is trapped. The free hanging droplet forms a
high quality optical resonator. Our 750 nL lasing droplets consist of Rhodamine
6G dissolved in ethylene glycol, at a concentration of 0.02 M. The droplets are
optically pumped at 532 nm light from a pulsed, frequency doubled Nd:YAG laser,
and the dye laser emission is analyzed by a fixed grating spectrometer. With
this setup we have achieved reproducible lasing spectra in the visible
wavelength range from 610 nm to 650 nm. The levitated droplet technique has
previously successfully been applied for a variety of bio-analytical
applications at single cell level. In combination with the lasing droplets, the
capability of this high precision setup has potential applications within
highly sensitive intra-cavity absorbance detection.Comment: 6 pages including 3 figure
Ballistic reflection at a side-gate in a superconductor-semiconductor-superconductor structure
We have fabricated a sub-micron-sized structure consisting of an InAs-based
2DEG, two narrow Nb leads and a gate, where the indirect ballistic transport
between the non-oppositely superconducting contacts can be controlled by the
voltage applied to the gate. This new kind of tuneable junction can be used for
applications and allows several fundamental questions related to the transport
mechanism to be studied. First results of experiments carried out in this
respect are presented.Comment: 6 pages, 4 eps-figure
- …