2 research outputs found

    Bioaccessibility of Polyphenols from Wheat (<i>Triticum aestivum</i>), Sorghum (<i>Sorghum bicolor</i>), Green Gram (<i>Vigna radiata</i>), and Chickpea (<i>Cicer arietinum</i>) as Influenced by Domestic Food Processing

    No full text
    Cereals (wheat and sorghum) and legumes (green gram and chickpea) commonly consumed in Asia and Africa were evaluated for polyphenolic content. Bioaccessibility of polyphenols from these grains as influenced by domestic processing was also estimated. Total polyphenol content of wheat and sorghum was 1.20 and 1.12 mg/g respectively, which was increased by 49% and 20% respectively, on roasting. In contrast, a significant reduction of the same was observed in both the cereals after pressure-cooking, open-pan boiling, and microwave heating. Total flavonoids, which was 0.89 mg/g in native sorghum, reduced drastically after processing. Tannin content of both the cereals significantly increased on sprouting as well as roasting. Total polyphenol content reduced by 31% on sprouting but increased to 24% on roasting in green gram. Pressure-cooking (53%), open-pan boiling (64%), and microwave heating (>2-fold increase) significantly increased total polyphenol content in chickpea, while drastic reduction was observed in the total flavonoid content. Bioaccessible total polyphenols from these grains were in the following order: green gram > chickpea > wheat > sorghum. Domestic processing of these grains had minimal/no effect on the bioaccessible total flavonoid content. Not all the phenolic compounds present in them were bioaccessible. Concentration of bioaccessible phenolic compounds increased especially on sprouting and roasting of these grains, except chickpea, where sprouting significantly reduced the same (476 to 264 μg/g). Microwave heating significantly enhanced the concentration of bioaccessible polyphenols especially from chickpea. Thus, sprouting and roasting provided more bioaccessible polyphenols from the cereals and legumes studied

    Ameliorative Influence of Dietary Fenugreek (<i>Trigonella foenum-graecum</i>) Seeds and Onion (<i>Allium cepa</i>) on Eye Lens Abnormalities via Modulation of Crystallin Proteins and Polyol Pathway in Experimental Diabetes

    No full text
    <p><i>Purpose and Methods</i>: Hyperglycemia-induced osmotic and oxidative stress is thought to be involved in the pathogenesis of diabetes-related secondary complications including cataract. In continuation of our previous observation of the ameliorative influence of these spices on hyperglycemia, attendant metabolic abnormalities, and oxidative stress in tissues of diabetic rats, the beneficial influence of dietary (10%) fenugreek seeds, (3%) onion, or their combination was investigated on diabetes-induced alteration in the eye lens of streptozotocin-induced diabetic rats.</p> <p><i>Results</i>: Animals maintained on these spices showed significantly countered oxidative stress markers (reactive oxygen species, lipid peroxidation and protein carbonyl), advanced glycation end products, and expression of their receptor in the eye lens. Increased activity of polyol pathway enzymes, their protein, and mRNA expression was significantly countered in the cataractogenic lens as a result of these dietary interventions. Altered crystallin (αA and αB) distribution profile, their expression, activity of carbohydrate metabolizing enzymes, and antioxidant status were significantly annulled by these dietary treatments. Physical and visual observation of the photomicrographs of the lenses of treated rats indicated that these dietary interventions delayed cataractogenesis in diabetic rats.</p> <p><i>Conclusions</i>: Overall, the present investigation evidenced a beneficial modulation of the progression of cataractogenesis by dietary fenugreek seeds and onion, implicating their potential in ameliorating cataract in diabetics.</p
    corecore