353 research outputs found

    Using a naive Bayesian classifier methodology for loan risk assessment: evidence from a Tunisian commercial bank

    Get PDF
    Purpose – Loan default risk or credit risk evaluation is important to financial institutions which provide loans to businesses and individuals. Loans carry the risk of being defaulted. To understand the risk levels of credit users (corporations and individuals), credit providers (bankers) normally collect vast amounts of information on borrowers. Statistical predictive analytic techniques can be used to analyse or to determine the risk levels involved in loans. This paper aims to address the question of default prediction of short-term loans for a Tunisian commercial bank. Design/methodology/approach – The authors have used a database of 924 files of credits granted to industrial Tunisian companies by a commercial bank in the years 2003, 2004, 2005 and 2006. The naive Bayesian classifier algorithm was used, and the results show that the good classification rate is of the order of 63.85 per cent. The default probability is explained by the variables measuring working capital, leverage, solvency, profitability and cash flow indicators. Findings – The results of the validation test show that the good classification rate is of the order of 58.66 per cent; nevertheless, the error types I and II remain relatively high at 42.42 and 40.47 per cent, respectively. A receiver operating characteristic curve is plotted to evaluate the performance of the model. The result shows that the area under the curve criterion is of the order of 69 per cent. Originality/value – The paper highlights the fact that the Tunisian central bank obliged all commercial banks to conduct a survey study to collect qualitative data for better credit notation of the borrowers.Propósito – El riesgo de incumplimiento de préstamos o la evaluación del riesgo de crédito es importante para las instituciones financieras que otorgan préstamos a empresas e individuos. Existe el riesgo de que el pago de préstamos no se cumpla. Para entender los niveles de riesgo de los usuarios de crédito (corporaciones e individuos), los proveedores de crédito (banqueros) normalmente recogen gran cantidad de información sobre los prestatarios. Las técnicas analíticas predictivas estadísticas pueden utilizarse para analizar o determinar los niveles de riesgo involucrados en los préstamos. En este artículo abordamos la cuestión de la predicción por defecto de los préstamos a corto plazo para un banco comercial tunecino. Diseño/metodología/enfoque – Utilizamos una base de datos de 924 archivos de créditos concedidos a empresas industriales tunecinas por un banco comercial en 2003, 2004, 2005 y 2006. El algoritmo bayesiano de clasificadores se llevó a cabo y los resultados muestran que la tasa de clasificación buena es del orden del 63.85%. La probabilidad de incumplimiento se explica por las variables que miden el capital de trabajo, el apalancamiento, la solvencia, la rentabilidad y los indicadores de flujo de efectivo. Hallazgos – Los resultados de la prueba de validación muestran que la buena tasa de clasificación es del orden de 58.66% ; sin embargo, los errores tipo I y II permanecen relativamente altos, siendo de 42.42% y 40.47%, respectivamente. Se traza una curva ROC para evaluar el rendimiento del modelo. El resultado muestra que el criterio de área bajo curva (AUC, por sus siglas en inglés) es del orden del 69%. Originalidad/valor – El documento destaca el hecho de que el Banco Central tunecino obligó a todas las entidades del sector llevar a cabo un estudio de encuesta para recopilar datos cualitativos para un mejor registro de crédito de los prestatarios

    Arriving on time: estimating travel time distributions on large-scale road networks

    Full text link
    Most optimal routing problems focus on minimizing travel time or distance traveled. Oftentimes, a more useful objective is to maximize the probability of on-time arrival, which requires statistical distributions of travel times, rather than just mean values. We propose a method to estimate travel time distributions on large-scale road networks, using probe vehicle data collected from GPS. We present a framework that works with large input of data, and scales linearly with the size of the network. Leveraging the planar topology of the graph, the method computes efficiently the time correlations between neighboring streets. First, raw probe vehicle traces are compressed into pairs of travel times and number of stops for each traversed road segment using a `stop-and-go' algorithm developed for this work. The compressed data is then used as input for training a path travel time model, which couples a Markov model along with a Gaussian Markov random field. Finally, scalable inference algorithms are developed for obtaining path travel time distributions from the composite MM-GMRF model. We illustrate the accuracy and scalability of our model on a 505,000 road link network spanning the San Francisco Bay Area
    • …
    corecore