74 research outputs found
Recommended from our members
Dynamic MAIT cell response with progressively enhanced innateness during acute HIV-1 infection.
Mucosa-associated invariant T (MAIT) cell loss in chronic HIV-1 infection is a significant insult to antimicrobial immune defenses. Here we investigate the response of MAIT cells during acute HIV-1 infection utilizing the RV217 cohort with paired longitudinal pre- and post-infection samples. MAIT cells are activated and expand in blood and mucosa coincident with peak HIV-1 viremia, in a manner associated with emerging microbial translocation. This is followed by a phase with elevated function as viral replication is controlled to a set-point level, and later by their functional decline at the onset of chronic infection. Interestingly, enhanced innate-like pathways and characteristics develop progressively in MAIT cells during infection, in parallel with TCR repertoire alterations. These findings delineate the dynamic MAIT cell response to acute HIV-1 infection, and show how the MAIT compartment initially responds and expands with enhanced function, followed by progressive reprogramming away from TCR-dependent antibacterial responses towards innate-like functionality
Expansion of Inefficient HIV-Specific CD8 T Cells during Acute Infection
ABSTRACT Attrition within the CD4 + T cell compartment, high viremia, and a cytokine storm characterize the early days after HIV infection. When the first emerging HIV-specific CD8 + T cell responses gain control over viral replication it is incomplete, and clearance of HIV infection is not achieved even in the rare cases of individuals who spontaneously control viral replication to nearly immeasurably low levels. Thus, despite their partial ability to control viremia, HIV-specific CD8 + T cell responses are insufficient to clear HIV infection. Studying individuals in the first few days of acute HIV infection, we detected the emergence of a unique population of CD38 + CD27 ā CD8 + T cells characterized by the low expression of the CD8 receptor (CD8 dim ). Interestingly, while high frequencies of HIV-specific CD8 + T cell responses occur within the CD38 + CD27 ā CD8 dim T cell population, the minority populations of CD8 bright T cells are significantly more effective in inhibiting HIV replication. Furthermore, the frequency of CD8 dim T cells directly correlates with viral load and clinical predictors of more rapid disease progression. We found that a canonical burst of proliferative cytokines coincides with the emergence of CD8 dim T cells, and the size of this population inversely correlates with the acute loss of CD4 + T cells. These data indicate, for the first time, that early CD4 + T cell loss coincides with the expansion of a functionally impaired HIV-specific CD8 dim T cell population less efficient in controlling HIV viremia. IMPORTANCE A distinct population of activated CD8 + T cells appears during acute HIV infection with diminished capacity to inhibit HIV replication and is predictive of viral set point, offering the first immunologic evidence of CD8 + T cell dysfunction during acute infection
Convalescent human IgG, but not IgM, from COVID-19 survivors confers dose-dependent protection against SARS-CoV-2 replication and disease in hamsters
IntroductionAntibody therapeutic strategies have served an important role during the COVID-19 pandemic, even as their effectiveness has waned with the emergence of escape variants. Here we sought to determine the concentration of convalescent immunoglobulin required to protect against disease from SARS-CoV-2 in a Syrian golden hamster model.MethodsTotal IgG and IgM were isolated from plasma of SARS-CoV-2 convalescent donors. Dose titrations of IgG and IgM were infused into hamsters 1 day prior to challenge with SARS-CoV-2 Wuhan-1.ResultsThe IgM preparation was found to have ~25-fold greater neutralization potency than IgG. IgG infusion protected hamsters from disease in a dose-dependent manner, with detectable serum neutralizing titers correlating with protection. Despite a higher in vitro neutralizing potency, IgM failed to protect against disease when transferred into hamsters.DiscussionThis study adds to the growing body of literature that demonstrates neutralizing IgG antibodies are important for protection from SARS-CoV-2 disease, and confirms that polyclonal IgG in sera can be an effective preventative strategy if the neutralizing titers are sufficiently high. In the context of new variants, against which existing vaccines or monoclonal antibodies have reduced efficacy, sera from individuals who have recovered from infection with the emerging variant may potentially remain an efficacious tool
Preconception maternal nutrition: a multi-site randomized controlled trial
Background: Research directed to optimizing maternal nutrition commencing prior to conception remains very limited, despite suggestive evidence of its importance in addition to ensuring an optimal nutrition environment in the periconceptional period and throughout the first trimester of pregnancy. Methods/Study design: This is an individually randomized controlled trial of the impact on birth length (primary outcome) of the time at which a maternal nutrition intervention is commenced: Arm 1: ā„ 3 mo preconception vs. Arm 2: 12-14 wk gestation vs. Arm 3: none. 192 (derived from 480) randomized mothers and living offspring in each arm in each of four research sites (Guatemala, India, Pakistan, Democratic Republic of the Congo). The intervention is a daily 20Ā g lipid-based (118Ā kcal) multi-micronutient (MMN) supplement. Women randomized to receive this intervention with body mass index (BMI) <20 or whose gestational weight gain is low will receive an additional 300Ā kcal/d as a balanced energy-protein supplement. Researchers will visit homes biweekly to deliver intervention and monitor compliance, pregnancy status and morbidity; ensure prenatal and delivery care; and promote breast feeding. The primary outcome is birth length. Secondary outcomes include: fetal length at 12 and 34 wk; incidence of low birth weight (LBW); neonatal/infant anthropometry 0-6 mo of age; infectious disease morbidity; maternal, fetal, newborn, and infant epigenetics; maternal and infant nutritional status; maternal and infant microbiome; gut inflammatory biomarkers and bioactive and nutritive compounds in breast milk. The primary analysis will compare birth Length-for-Age Z-score (LAZ) among trial arms (independently for each site, estimated effect size: 0.35). Additional statistical analyses will examine the secondary outcomes and a pooled analysis of data from all sites. Discussion: Positive results of this trial will support a paradigm shift in attention to nutrition of all females of child-bearing age. Trial registration: ClinicalTrials.gov NCT01883193
Recommended from our members
Fine epitope signature of antibody neutralization breadth at the HIV-1 envelope CD4-binding site
Major advances in donor identification, antigen probe design, and experimental methods to clone pathogen-specific antibodies have led to an exponential growth in the number of newly characterized broadly neutralizing antibodies (bnAbs) that recognize the HIV-1 envelope glycoprotein. Characterization of these bnAbs has defined new epitopes and novel modes of recognition that can result in potent neutralization of HIV-1. However, the translation of envelope recognition profiles in biophysical assays into an understanding of in vivo activity has lagged behind, and identification of subjects and mAbs with potent antiviral activity has remained reliant on empirical evaluation of neutralization potency and breadth. To begin to address this discrepancy between recombinant protein recognition and virus neutralization, we studied the fine epitope specificity of a panel of CD4-binding site (CD4bs) antibodies to define the molecular recognition features of functionally potent humoral responses targeting the HIV-1 envelope site bound by CD4. Whereas previous studies have used neutralization data and machine-learning methods to provide epitope maps, here, this approach was reversed, demonstrating that simple binding assays of fine epitope specificity can prospectively identify broadly neutralizing CD4bsāspecific mAbs. Building on this result, we show that epitope mapping and prediction of neutralization breadth can also be accomplished in the assessment of polyclonal serum responses. Thus, this study identifies a set of CD4bs bnAb signature amino acid residues and demonstrates that sensitivity to mutations at signature positions is sufficient to predict neutralization breadth of polyclonal sera with a high degree of accuracy across cohorts and across clades
The Drosophila melanogaster host model
The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogenāhost interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterialāhost interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalisāhost interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed
Genetic Mapping of Secretion and Functional Determinants of the Vibrio cholerae TcpF Colonization Factor
Colonization of the human small intestine by Vibrio cholerae requires the type IV toxin-coregulated pilus (TCP). TcpF, which is encoded within the tcp operon, is secreted from the bacterial cell by the TCP apparatus and is also essential for colonization. Bacteria lacking tcpF are deficient in colonization, and anti-TcpF antibodies are protective in the infant mouse cholera model. In order to elucidate the regions of the protein that are required for secretion through the TCP apparatus and for its function in colonization, random mutagenesis of tcpF was performed. Analysis of these mutants suggests that multiple regions throughout the protein influence extracellular secretion and that determinants near the C terminus are important for the function of TcpF in colonization. The TcpF proteins of certain environmental V. cholerae isolates with 31% to 66% identity to pathogenic V. cholerae TcpF showed higher similarity in regions identified as secretion determinants but diverged in regions found to be important for colonization. These environmental TcpF proteins are secreted from the pathogenic strain; however, they do not mediate colonization in the infant mouse model. Here we provide genetic evidence pointing toward regions of TcpF that influence secretion, as well as regions that play an important role in in vivo colonization
Protection and Attachment of Vibrio cholerae Mediated by the Toxin-Coregulated Pilus in the Infant Mouse Modelāæā
Colonization of the human small intestine by Vibrio cholerae is an essential step in pathogenesis that requires the type IV toxin-coregulated pilus (TCP). To date, three functions of TCP have been characterized: it serves as the CTXĪ¦ receptor, secretes the colonization factor TcpF, and functions in microcolony formation by mediating bacterium-bacterium interactions. Although type IV pili in other pathogenic bacteria have been characterized as playing a major role in attachment to epithelial cells, there are very few studies to suggest that TCP acts as an attachment factor. Taking this into consideration, we investigated the function of TCP in attachment to Caco-2 cells and found that mutants lacking TCP were defective in attachment compared to the wild type. Overexpression of ToxT, the activator of TCP, significantly increased attachment of wild-type V. cholerae to Caco-2 cells. Using field-emission scanning electron microscopy (FESEM), we also observed TCP-mediated attachment to the small intestines of infected infant mice by using antibodies specific to TCP and V. cholerae. Remarkably, we also visualized matrices comprised of TCP appearing to engulf V. cholerae during infection, and we demonstrated that these matrices protected the bacteria from a component of bile, disclosing a possible new role of this pilus in protection of the bacterial cells from antimicrobial agents. This study provides new insights into TCP's function in V. cholerae colonization of the small intestine, describing additional roles in mediating attachment and protection of V. cholerae bacterial cells
Genetic Mapping of Secretion and Functional Determinants of the Vibrio cholerae TcpF Colonization Factorāæ
Colonization of the human small intestine by Vibrio cholerae requires the type IV toxin-coregulated pilus (TCP). TcpF, which is encoded within the tcp operon, is secreted from the bacterial cell by the TCP apparatus and is also essential for colonization. Bacteria lacking tcpF are deficient in colonization, and anti-TcpF antibodies are protective in the infant mouse cholera model. In order to elucidate the regions of the protein that are required for secretion through the TCP apparatus and for its function in colonization, random mutagenesis of tcpF was performed. Analysis of these mutants suggests that multiple regions throughout the protein influence extracellular secretion and that determinants near the C terminus are important for the function of TcpF in colonization. The TcpF proteins of certain environmental V. cholerae isolates with 31% to 66% identity to pathogenic V. cholerae TcpF showed higher similarity in regions identified as secretion determinants but diverged in regions found to be important for colonization. These environmental TcpF proteins are secreted from the pathogenic strain; however, they do not mediate colonization in the infant mouse model. Here we provide genetic evidence pointing toward regions of TcpF that influence secretion, as well as regions that play an important role in in vivo colonization
- ā¦