10,086 research outputs found

    Novel Phenomena in Dilute Electron Systems in Two Dimensions

    Full text link
    We review recent experiments that provide evidence for a transition to a conducting phase in two dimensions at very low electron densities. The nature of this phase is not understood, and is currently the focus of intense theoretical and experimental attention.Comment: To appear as a Perspective in the Proceedings of the National Academy of Sciences. Reference to Chakravarty, Kivelson, Nayak, and Voelker's paper added (Phil. Mag., in press

    Metal-insulator transition in two-dimensional electron systems

    Full text link
    The interplay between strong Coulomb interactions and randomness has been a long-standing problem in condensed matter physics. According to the scaling theory of localization, in two-dimensional systems of noninteracting or weakly interacting electrons, the ever-present randomness causes the resistance to rise as the temperature is decreased, leading to an insulating ground state. However, new evidence has emerged within the past decade indicating a transition from insulating to metallic phase in two-dimensional systems of strongly interacting electrons. We review earlier experiments that demonstrate the unexpected presence of a metallic phase in two dimensions, and present an overview of recent experiments with emphasis on the anomalous magnetic properties that have been observed in the vicinity of the transition.Comment: As publishe

    On a complex differential Riccati equation

    Full text link
    We consider a nonlinear partial differential equation for complex-valued functions which is related to the two-dimensional stationary Schrodinger equation and enjoys many properties similar to those of the ordinary differential Riccati equation as, e.g., the famous Euler theorems, the Picard theorem and others. Besides these generalizations of the classical "one-dimensional" results we discuss new features of the considered equation like, e.g., an analogue of the Cauchy integral theorem

    Quaternion Analysis for Generalized Electromagnetic Fields of Dyons in Isotropic Medium

    Get PDF
    Quaternion analysis of time dependent Maxwell's equations in presence of electric and magnetic charges has been developed and the solutions for the classical problem of moving charges (electric and magnetic) are obtained in unique, simple and consistent manner

    Formation of three-particle clusters in hetero-junctions and MOSFET structures

    Full text link
    A novel interaction mechanism in MOSFET structures and GaAs/AlGaAsGaAs/AlGaAs hetero-junctions between the zone electrons of the two-dimensional (2D) gas and the charged traps on the insulator side is considered. By applying a canonical transformation, off-diagonal terms in the Hamiltonian due to the trapped level subsystem are excluded. This yields an effective three-particle attractive interaction as well as a pairing interaction inside the 2D electronic band. A type of Bethe- Goldstone equation for three particles is studied to clarify the character of the binding and the energy of the three-particle bound states. The results are used to offer a possible explanation of the Metal-Insulator transition recently observed in MOSFET and hetero-junctions.Comment: 4 page

    Magnetic Field Suppression of the Conducting Phase in Two Dimensions

    Full text link
    The anomalous conducting phase that has been shown to exist in zero field in dilute two-dimensional electron systems in silicon MOSFETs is driven into a strongly insulating state by a magnetic field of about 20 kOe applied parallel to the plane. The data suggest that in the limit of T -> 0 the conducting phase is suppressed by an arbitrarily weak magnetic field. We call attention to striking similarities to magnetic field-induced superconductor-insulator transitions
    corecore