6 research outputs found
Low-Power Reconfigurable Architectures for High-Performance Mobile Nodes
Modern embedded systems have an emerging demand on high
performance and low power circuits. Traditionally special functional units for
each application are developed separately. These are plugged to a general
purpose processors to extend its instruction set making it an application specific
instruction set processor. As this strategy reaches its boundaries in area and
complexity reconfigurable architectures propose to be more flexible. Thus
combining both approaches to a reconfigurable application specific processor is
going to be the upcoming solution for future embedded systems
Transcriptional effects of a lupus-associated polymorphism in the 5' untranslated region (UTR) of human complement receptor 2 (CR2/CD21)
Systemic lupus erythematosus (SLE) is a complex autoimmune disease with a strong genetic component that determines risk. A common three single-nucleotide polymorphism (SNP) haplotype of the complement receptor 2 (CR2) gene has been associated with increased risk of SLE (Wu et al., 2007; Douglas et al., 2009), and a less common haplotype consisting of the major allele at SNP1 and minor alleles at SNP2 and 3 confers protection (Douglas et al., 2009). SNP1 (rs3813946), which is located in the 5' untranslated region (UTR) of the CR2 gene, altered transcriptional activity of a CR2 promoter-luciferase reporter gene construct transiently transfected into a B cell line (Wu et al., 2007) and had an independent effect in the protective haplotype (Douglas et al., 2009). In this study, we show that this SNP alters transcriptional activity in a transiently transfected non B-cell line as well as in stably transfected cell lines, supporting its relevance in vivo. Furthermore, the allele at this SNP affects chromatin accessibility of the surrounding sequence and transcription factor binding. These data confirm the effects of rs3813946 on CR2 transcription, identifying the 5' UTR to be a novel regulatory element for the CR2 gene in which variation may alter gene function and modify the development of lupus